Skip to main content
Log in

An efficient primal-dual interior point algorithm for convex quadratic semidefinite optimization

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

We introduce a primal-dual interior point algorithm for convex quadratic semidefinite optimization. This algorithm is based on an extension of the technique presented in the work of Zhang et al. for linear optimization. The symmetrization of the search direction is based on the Nesterov–Todd scaling scheme. Our analysis demonstrates that this method solves efficiently the problem within polynomial time. Notably, the short-step algorithm achieves the best-known iteration bound, namely \(O(\sqrt{n}\log \frac{n}{\varepsilon })\)-iterations. The numerical experiments conclude that the newly proposed algorithm is not only polynomial but requires a number of iterations clearly lower than that obtained theoretically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1

Similar content being viewed by others

Code Availability

Not applicable.

References

  1. Abo-Hammour, Z., Abu Arqub, O., Momani, S., Shawagfeh, N., et al.: Optimization solution of Troesch’s and Bratu’s problems of ordinary type using novel continuous genetic algorithm. Discret. Dyn. Nat. Soc. (2014). https://doi.org/10.1155/2014/401696

    Article  MathSciNet  Google Scholar 

  2. Arqub, O.A., Abo-Hammour, Z.: Numerical solution of systems of second-order boundary value problems using continuous genetic algorithm. Inf. Sci. 279, 396–415 (2014). https://doi.org/10.1016/j.ins.2014.03.128

    Article  MathSciNet  Google Scholar 

  3. Abo-Hammour, Z., Alsmadi, O., Momani, S., Abu Arqub, O., et al.: A genetic algorithm approach for prediction of linear dynamical systems. Math. Probl. Eng. (2013). https://doi.org/10.1155/2013/831657

    Article  Google Scholar 

  4. Todd, M.J., Toh, K.-C., Tütüncü, R.H.: On the nesterov-todd direction in semidefinite programming. SIAM J. Optim. 8(3), 769–796 (1998). https://doi.org/10.1137/S105262349630060

    Article  MathSciNet  Google Scholar 

  5. Toh, K.-C.: An inexact primal-dual path following algorithm for convex quadratic SDP. Math. Program. 112(1), 221–254 (2008). https://doi.org/10.1007/s10107-006-0088-y

    Article  MathSciNet  Google Scholar 

  6. Toh, K., Tutuncu, R., Todd, M.: Inexact primal-dual path-following algorithms for a special class of convex quadratic SDP and related problems. Pacific J. Optim. 3(1), 135–164 (2007)

    MathSciNet  Google Scholar 

  7. Wang, G., Bai, Y.: Primal-dual interior-point algorithm for convex quadratic semi-definite optimization. Nonlinear Anal. 71(7–8), 3389–3402 (2009). https://doi.org/10.1016/j.na.2009.01.241

    Article  MathSciNet  Google Scholar 

  8. Kojima, M., Shindoh, S., Hara, S.: Interior-point methods for the monotone semidefinite linear complementarity problem in symmetric matrices. SIAM J. Optim. 7, 86–125 (1997). https://doi.org/10.1137/S1052623494269035

    Article  MathSciNet  Google Scholar 

  9. Karmarkar, N.: A new polynomial-time algorithm for linear programming. In: Proceedings of the Sixteenth Annual ACM Symposium on Theory of Computing, pp. 302–311 (1984)

  10. Achache, M., Guerra, L.: A full nesterov-todd-step feasible primal-dual interior point algorithm for convex quadratic semi-definite optimization. Appl. Math. Comput. 231, 581–590 (2014). https://doi.org/10.1016/j.amc.2013.12.070

    Article  MathSciNet  Google Scholar 

  11. De Klerk, E.: Aspects of Semidefinite Programming: Interior-point Algorithms and Selected Applications. Kluwer Academic Publisher, Dordrecht (2002)

    Book  Google Scholar 

  12. Nie, J., Yuan, Y.: A potential reduction algorithm for an extended sdp problem. Sci. Chin. Ser. 43, 35–46 (2000). https://doi.org/10.1007/BF02903846

    Article  MathSciNet  Google Scholar 

  13. Wang, G., Zhu, D.: A unified kernel function approach to primal-dual interior-point algorithms for convex quadratic sdo. Numer. Algorithms. 57, 537–558 (2011). https://doi.org/10.1007/s11075-010-9444-3

    Article  MathSciNet  Google Scholar 

  14. Zhang, M.W.: A large-update interior-point algorithm for convex quadratic semi-definite optimization based on a new kernel function. Acta Math. Sin. 28(11), 2313–2328 (2012). https://doi.org/10.1007/s10114-012-0194-0

    Article  MathSciNet  Google Scholar 

  15. Zhang, L., Xu, Y., Jin, Z.: An efficient algorithm for convex quadratic semi-definite optimization. Numer. Algebra Control Optim. 2(1), 129–144 (2012). https://doi.org/10.3934/naco.2012.2.129

    Article  MathSciNet  Google Scholar 

  16. Roos, C., Terlaky, T., Vial, J.P.: Theory and Algorithms for Linear Optimization. An Interior Point Approach. Wiley, Chichester (1997)

    Google Scholar 

  17. Wright, S.J.: Primal-dual Interior Point Methods. Copyright by SIAM, Philadelphia (1997)

    Book  Google Scholar 

  18. Bouafia, M., Benterki, D., Yassine, A.: An efficient primal-dual interior point method for linear programming problems based on a new kernel function with a trigonometric barrier term. J. Optim. Theory Appl. 170, 528–545 (2016). https://doi.org/10.1007/s10957-016-0895-0

    Article  MathSciNet  Google Scholar 

  19. Darvay, Z.: New interior point algorithms in linear programming. Adv. Model. Optim 5(1), 51–92 (2003)

    MathSciNet  Google Scholar 

  20. Touil, I., Benterki, D., Yassine, A.: A feasible primal-dual interior point method for linear semidefinite programming. J. Comput. Appl. Math. 312, 216–230 (2017). https://doi.org/10.1016/j.cam.2016.05.008

    Article  MathSciNet  Google Scholar 

  21. Zhang, L., Xu, Y.: A full-newton step interior-point algorithm based on modified newton direction. Oper. Res. Lett. 39, 318–322 (2011). https://doi.org/10.1016/j.orl.2011.06.006

    Article  MathSciNet  Google Scholar 

  22. Darvay, Z., Takàcs, P.R.: New method for determining search directions for interior point algorithms in linear optimization. Optim. Lett. 12, 1099–1116 (2018). https://doi.org/10.1007/s11590-017-1171-4

    Article  MathSciNet  Google Scholar 

  23. Takács, P.R., Darvay, Z.: A primal-dual interior-point algorithm for symmetric optimization based on a new method for finding search directions. Optimization 67(6), 889–905 (2018). https://doi.org/10.1080/02331934.2018.1432610

    Article  MathSciNet  Google Scholar 

  24. Kheirfam, B.: A new search direction for full-newton step interior-point method in \(p^{\ast }(k)\)-HLCP. Numer. Funct. Anal. Optim. 40(10), 1169–118 (2019). https://doi.org/10.1080/01630563.2019.1598430

    Article  MathSciNet  Google Scholar 

  25. Guerra, L.: A class of new search directions for full-nt step feasible interior point method in semidefinite optimization. RAIRO Oper. Res. 56(6), 3955–3971 (2022). https://doi.org/10.1051/ro/2022192

    Article  MathSciNet  Google Scholar 

  26. Darvay, Z., Illés, T., Rigó, P.R.: Predictor-corrector interior-point algorithm for p*(\(\kappa \))-linear complementarity problems based on a new type of algebraic equivalent transformation technique. Eur. J. Oper. Res. 298(1), 25–35 (2022). https://doi.org/10.1016/j.ejor.2021.08.039

    Article  MathSciNet  Google Scholar 

  27. Kheirfam, B.: A new full-nt step interior-point method for circular cone optimization. Croat. Oper. Res. Rev. 275–287 (2019)

  28. Kheirfam, B.: A new search direction for full-newton step infeasible interior-point method in linear optimization. arXiv:2102.07223 (2021)

  29. Nesterov, Y., Todd, M.J.: Self-scaled barriers and interior-point methods for convex programming. Math. Oper. Res. 22, 1–42 (1997). https://doi.org/10.1287/moor.22.1.1

    Article  MathSciNet  Google Scholar 

  30. Nesterov, Y., Todd, M.J.: Primal-dual interior-point methods for self-scaled cones. SIAM J. Optim. 8(2), 324–364 (1998). https://doi.org/10.1137/S1052623495290209

    Article  MathSciNet  Google Scholar 

  31. Guerra, L.: Méthodes de Points Intérieurs et Fonctions Noyaux Pour L’optimisation Quadratique Semi-définie Convexe. Ferhat Abbas Setif-1 university, Ph.D thesis (2018)

Download references

Acknowledgements

The authors are grateful to the editor-in-chief and the anonymous referees for their valuable suggestions.

Funding

Not applicable

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding author

Correspondence to Billel Zaoui.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaoui, B., Benterki, D. & Yassine, A. An efficient primal-dual interior point algorithm for convex quadratic semidefinite optimization. J. Appl. Math. Comput. 70, 2129–2148 (2024). https://doi.org/10.1007/s12190-024-02041-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-024-02041-3

Keywords

Mathematics Subject Classification