Abstract
We introduce a primal-dual interior point algorithm for convex quadratic semidefinite optimization. This algorithm is based on an extension of the technique presented in the work of Zhang et al. for linear optimization. The symmetrization of the search direction is based on the Nesterov–Todd scaling scheme. Our analysis demonstrates that this method solves efficiently the problem within polynomial time. Notably, the short-step algorithm achieves the best-known iteration bound, namely \(O(\sqrt{n}\log \frac{n}{\varepsilon })\)-iterations. The numerical experiments conclude that the newly proposed algorithm is not only polynomial but requires a number of iterations clearly lower than that obtained theoretically.

Similar content being viewed by others
Code Availability
Not applicable.
References
Abo-Hammour, Z., Abu Arqub, O., Momani, S., Shawagfeh, N., et al.: Optimization solution of Troesch’s and Bratu’s problems of ordinary type using novel continuous genetic algorithm. Discret. Dyn. Nat. Soc. (2014). https://doi.org/10.1155/2014/401696
Arqub, O.A., Abo-Hammour, Z.: Numerical solution of systems of second-order boundary value problems using continuous genetic algorithm. Inf. Sci. 279, 396–415 (2014). https://doi.org/10.1016/j.ins.2014.03.128
Abo-Hammour, Z., Alsmadi, O., Momani, S., Abu Arqub, O., et al.: A genetic algorithm approach for prediction of linear dynamical systems. Math. Probl. Eng. (2013). https://doi.org/10.1155/2013/831657
Todd, M.J., Toh, K.-C., Tütüncü, R.H.: On the nesterov-todd direction in semidefinite programming. SIAM J. Optim. 8(3), 769–796 (1998). https://doi.org/10.1137/S105262349630060
Toh, K.-C.: An inexact primal-dual path following algorithm for convex quadratic SDP. Math. Program. 112(1), 221–254 (2008). https://doi.org/10.1007/s10107-006-0088-y
Toh, K., Tutuncu, R., Todd, M.: Inexact primal-dual path-following algorithms for a special class of convex quadratic SDP and related problems. Pacific J. Optim. 3(1), 135–164 (2007)
Wang, G., Bai, Y.: Primal-dual interior-point algorithm for convex quadratic semi-definite optimization. Nonlinear Anal. 71(7–8), 3389–3402 (2009). https://doi.org/10.1016/j.na.2009.01.241
Kojima, M., Shindoh, S., Hara, S.: Interior-point methods for the monotone semidefinite linear complementarity problem in symmetric matrices. SIAM J. Optim. 7, 86–125 (1997). https://doi.org/10.1137/S1052623494269035
Karmarkar, N.: A new polynomial-time algorithm for linear programming. In: Proceedings of the Sixteenth Annual ACM Symposium on Theory of Computing, pp. 302–311 (1984)
Achache, M., Guerra, L.: A full nesterov-todd-step feasible primal-dual interior point algorithm for convex quadratic semi-definite optimization. Appl. Math. Comput. 231, 581–590 (2014). https://doi.org/10.1016/j.amc.2013.12.070
De Klerk, E.: Aspects of Semidefinite Programming: Interior-point Algorithms and Selected Applications. Kluwer Academic Publisher, Dordrecht (2002)
Nie, J., Yuan, Y.: A potential reduction algorithm for an extended sdp problem. Sci. Chin. Ser. 43, 35–46 (2000). https://doi.org/10.1007/BF02903846
Wang, G., Zhu, D.: A unified kernel function approach to primal-dual interior-point algorithms for convex quadratic sdo. Numer. Algorithms. 57, 537–558 (2011). https://doi.org/10.1007/s11075-010-9444-3
Zhang, M.W.: A large-update interior-point algorithm for convex quadratic semi-definite optimization based on a new kernel function. Acta Math. Sin. 28(11), 2313–2328 (2012). https://doi.org/10.1007/s10114-012-0194-0
Zhang, L., Xu, Y., Jin, Z.: An efficient algorithm for convex quadratic semi-definite optimization. Numer. Algebra Control Optim. 2(1), 129–144 (2012). https://doi.org/10.3934/naco.2012.2.129
Roos, C., Terlaky, T., Vial, J.P.: Theory and Algorithms for Linear Optimization. An Interior Point Approach. Wiley, Chichester (1997)
Wright, S.J.: Primal-dual Interior Point Methods. Copyright by SIAM, Philadelphia (1997)
Bouafia, M., Benterki, D., Yassine, A.: An efficient primal-dual interior point method for linear programming problems based on a new kernel function with a trigonometric barrier term. J. Optim. Theory Appl. 170, 528–545 (2016). https://doi.org/10.1007/s10957-016-0895-0
Darvay, Z.: New interior point algorithms in linear programming. Adv. Model. Optim 5(1), 51–92 (2003)
Touil, I., Benterki, D., Yassine, A.: A feasible primal-dual interior point method for linear semidefinite programming. J. Comput. Appl. Math. 312, 216–230 (2017). https://doi.org/10.1016/j.cam.2016.05.008
Zhang, L., Xu, Y.: A full-newton step interior-point algorithm based on modified newton direction. Oper. Res. Lett. 39, 318–322 (2011). https://doi.org/10.1016/j.orl.2011.06.006
Darvay, Z., Takàcs, P.R.: New method for determining search directions for interior point algorithms in linear optimization. Optim. Lett. 12, 1099–1116 (2018). https://doi.org/10.1007/s11590-017-1171-4
Takács, P.R., Darvay, Z.: A primal-dual interior-point algorithm for symmetric optimization based on a new method for finding search directions. Optimization 67(6), 889–905 (2018). https://doi.org/10.1080/02331934.2018.1432610
Kheirfam, B.: A new search direction for full-newton step interior-point method in \(p^{\ast }(k)\)-HLCP. Numer. Funct. Anal. Optim. 40(10), 1169–118 (2019). https://doi.org/10.1080/01630563.2019.1598430
Guerra, L.: A class of new search directions for full-nt step feasible interior point method in semidefinite optimization. RAIRO Oper. Res. 56(6), 3955–3971 (2022). https://doi.org/10.1051/ro/2022192
Darvay, Z., Illés, T., Rigó, P.R.: Predictor-corrector interior-point algorithm for p*(\(\kappa \))-linear complementarity problems based on a new type of algebraic equivalent transformation technique. Eur. J. Oper. Res. 298(1), 25–35 (2022). https://doi.org/10.1016/j.ejor.2021.08.039
Kheirfam, B.: A new full-nt step interior-point method for circular cone optimization. Croat. Oper. Res. Rev. 275–287 (2019)
Kheirfam, B.: A new search direction for full-newton step infeasible interior-point method in linear optimization. arXiv:2102.07223 (2021)
Nesterov, Y., Todd, M.J.: Self-scaled barriers and interior-point methods for convex programming. Math. Oper. Res. 22, 1–42 (1997). https://doi.org/10.1287/moor.22.1.1
Nesterov, Y., Todd, M.J.: Primal-dual interior-point methods for self-scaled cones. SIAM J. Optim. 8(2), 324–364 (1998). https://doi.org/10.1137/S1052623495290209
Guerra, L.: Méthodes de Points Intérieurs et Fonctions Noyaux Pour L’optimisation Quadratique Semi-définie Convexe. Ferhat Abbas Setif-1 university, Ph.D thesis (2018)
Acknowledgements
The authors are grateful to the editor-in-chief and the anonymous referees for their valuable suggestions.
Funding
Not applicable
Author information
Authors and Affiliations
Contributions
All authors contributed equally to this work.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflicts of interest.
Ethical approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zaoui, B., Benterki, D. & Yassine, A. An efficient primal-dual interior point algorithm for convex quadratic semidefinite optimization. J. Appl. Math. Comput. 70, 2129–2148 (2024). https://doi.org/10.1007/s12190-024-02041-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12190-024-02041-3
Keywords
- Convex quadratic semidefinite optimization
- Interior point methods
- Descent direction
- Primal-dual algorithm
- Nesterov–Todd scaling scheme