Skip to main content

Advertisement

Log in

Two new classes of AMDS symbol-pair cyclic codes of length 4p

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

For any odd prime p, we provide in this paper two new classes of AMDS symbol-pair cyclic codes of length 4p, one of symbol-pair distance 7 and one of symbol-pair distance 8. This results in two families of AMDS symbol-pair cyclic codes that can be used directly in applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berman, S.D.: Semisimple cyclic and Abelian codes. II. Cybernetics 3, 17–23 (1967)

    Article  MathSciNet  Google Scholar 

  2. Boer, M.A.D.: Almost MDS codes. Des. Codes Cryptogr. 9, 143–155 (1996)

    Article  MathSciNet  Google Scholar 

  3. Cassuto, Y., Blaum, M.: Codes for symbol-pair read channels. IEEE Trans. Inf. Theory 57, 8011–8020 (2011)

    Article  MathSciNet  Google Scholar 

  4. Cassuto, Y., Litsyn, S.: Symbol-pair codes: algebraic constructions and asymptotic bounds. In: Conference in Proceedings of IEEE International Symposium on Information Theory, St. Petersburg, Russia, Jul.–Aug., pp. 2348–2352 (2011)

  5. Castagnoli, G., Massey, J.L., Schoeller, P.A., von Seemann, N.: On repeated-root cyclic codes. IEEE Trans. Inf. Theory 37, 337–342 (1991)

    Article  MathSciNet  Google Scholar 

  6. Chee, Y.M., Kiah, H.M., Wang, C.: Maximum distance separable symbol-pair codes. In: Proceedings of IEEE International Symposium on Information Theory (ISIT), pp. 2886–2890 (2012)

  7. Chen, B., Lin, L., Liu, H.: Constacyclic symbol-pair codes: lower bounds and optimal constructions. IEEE Trans. Inf. Theory 12, 7661–7666 (2017)

    Article  MathSciNet  Google Scholar 

  8. Dinh, H.Q., Nguyen, B.T., Singh, A.K., Yamaka, W.: MDS constacyclic codes and MDS symbol-pair constacyclic codes. IEEE Access 9, 137970–137990 (2021)

    Article  Google Scholar 

  9. Faldum, A., Willems, W.: A characterization of codes with extreme parameters. IEEE Trans. Inf. Theory 42(6), 2255–2257 (1996)

    Article  MathSciNet  Google Scholar 

  10. Faldum, A., Willems, W.: Codes with a small defect. Des. Codes Cryptogr. 10(3), 341–350 (1997)

    Article  MathSciNet  Google Scholar 

  11. Massey, J.L., Costello, D.J., Justesen, J.: Polynomial weights and code constructions. IEEE Trans. Inf. Theory 19, 101–110 (1973)

    Article  MathSciNet  Google Scholar 

  12. Prange, E.: Cyclic Error-Correcting Codes in Two Symbols, AFCRCTN-57-103. USAF Cambridge Research Laboratories (1957)

  13. Roth, R.M., Seroussi, G.: On cyclic MDS codes of length \(q\) over \(GF(q)\). IEEE Trans. Inf. Theory 32, 284–285 (1986)

    Article  MathSciNet  Google Scholar 

  14. van Lint, J.H.: Repeated-root cyclic codes. IEEE Trans. Inf. Theory 37, 343–345 (1991)

    Article  MathSciNet  Google Scholar 

  15. Yaakobi, E., Bruck, J., Siegel, P.H.: Decoding of cyclic codes over symbol-pair read channels. In: Conference in Proceedings of International Symposium on Information Theory, Cambridge, MA, USA, pp. 2891–2895 (2012)

Download references

Acknowledgements

This research is funded by University of Economics and Law, Vietnam National University Ho Chi Minh City / VNU-HCM. We thank the anonymous reviewers for their careful reading of our manuscript and their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hieu V. Ha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinh, H.Q., Ha, H.V., Nguyen, B.T. et al. Two new classes of AMDS symbol-pair cyclic codes of length 4p. J. Appl. Math. Comput. 70, 4117–4131 (2024). https://doi.org/10.1007/s12190-024-02127-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-024-02127-y

Keywords

Mathematics Subject Classification

Navigation