Skip to main content
Log in

Inertial modified S-iteration method for Cayley inclusion problem and fixed point problem

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

The primary goal of this paper is to study and examine an inertial modified S-iteration method that combines modified S-iteration with inertial extrapolation term to approximate a common solution of the Cayley inclusion problem and the fixed point problem in the framework of real Hilbert space. Under some modest circumstances, we prove weak and strong convergence theorems. A numerical example is also provided to demonstrate the effectiveness of the proposed iterative algorithm. Finally, a comparison has also been carried out of our algorithm with an existing method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Alvarez, F.: Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert space. SIAM J. Optim. 14, 773–782 (2004)

    Article  MathSciNet  Google Scholar 

  2. Alvarez, F., Attouch, H.: An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping. Set-Valued Anal. 9, 3–11 (2001)

    Article  MathSciNet  Google Scholar 

  3. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces, vol. 408. Springer, Berlin (2011)

    Book  Google Scholar 

  4. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4, 1168–1200 (2005)

    Article  MathSciNet  Google Scholar 

  5. Dar, A.H., Ahmad, M.K., Iqbal, J., Mir, W.A.: Algorithm of common solutions to the Cayley inclusion and fixed point problems. Kyungpook Math. J. 61, 257–267 (2021)

    MathSciNet  Google Scholar 

  6. Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. A J. Issued Courant Inst. Math. Sci. 57, 1413–1457 (2004)

    Article  MathSciNet  Google Scholar 

  7. Dong, Q.L., He, S., Cho, Y.J.: A new hybrid algorithm and its numerical realization for two nonexpansive mappings. Fixed Point Theory Appl. 2015, 1–12 (2015)

    MathSciNet  Google Scholar 

  8. Duchi, J., Singer, Y.: Efficient online and batch learning using forward backward splitting. J. Mach. Learn. Res. 10, 2899–2934 (2009)

    MathSciNet  Google Scholar 

  9. Husain, S., Khan, F.A., Furkan, M., Khairoowala, M.U., Eljaneid, N.H.: Inertial projection algorithm for solving split best proximity point and mixed equilibrium problems in Hilbert spaces. Axioms 11, 321 (2022)

    Article  Google Scholar 

  10. Husain, S., Tom, M.A.O., Khairoowala, M.U., Furkan, M., Khan, F.A.: Inertial Tseng method for solving the variational inequality problem and monotone inclusion problem in real Hilbert space. Mathematics 10, 3151 (2022)

    Article  Google Scholar 

  11. Martinet, B.: Régularisation d’inéquations variationnelles par approximations successives. rev. française informat, Recherche Opérationnelle, 4, 154–158 (1970)

  12. Nakajo, K., Takahashi, W.: Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups. J. Math. Anal. Appl. 279, 372–379 (2003)

    Article  MathSciNet  Google Scholar 

  13. Nevanlinna, O., Reich, S.: Strong convergence of contraction semigroups and of iterative methods for accretive operators in Banach spaces. Israel J. Math. 32, 44–58 (1979)

    Article  MathSciNet  Google Scholar 

  14. Phon-on, A., Makaje, N., Sama-Ae, A., Khongraphan, K.: An inertial s-iteration process. Fixed Point Theory Appl. 2019, 1–14 (2019)

    Article  MathSciNet  Google Scholar 

  15. Polyak, B.T.: Some methods of speeding up the convergence of iteration methods. USSR Comput. Math. Math. Phys. 4, 1–17 (1964)

    Article  Google Scholar 

  16. Raguet, H., Fadili, J., Peyré, G.: A generalized forward-backward splitting. SIAM J. Imag. Sci. 6, 1199–1226 (2013)

    Article  MathSciNet  Google Scholar 

  17. Reich, S.: Extension problems for accretive sets in Banach spaces. J. Funct. Anal. 26, 378–395 (1977)

    Article  MathSciNet  Google Scholar 

  18. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control. Optim. 14, 877–898 (1976)

    Article  MathSciNet  Google Scholar 

  19. Shahzad, N., Al-Dubiban, R.: Approximating common fixed points of nonexpansive mappings in Banach spaces (2006)

  20. Suparatulatorn, R., Cholamjiak, W., Suantai, S.: A modified s-iteration process for g-nonexpansive mappings in banach spaces with graphs. Numer. Algorithms 77, 479–490 (2018)

    Article  MathSciNet  Google Scholar 

  21. Webb, J.: Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert (1974)

  22. Wen, D.-J.: Weak and strong convergence theorems of g-monotone nonexpansive mapping in banach spaces with a graph. Numer. Funct. Anal. Optim. 40, 163–177 (2019)

    Article  MathSciNet  Google Scholar 

  23. Yao, Y., Postolache, M., Yao, J.-C.: An approximation algorithm for solving a split problem of fixed point and variational inclusion. Optimization, pp. 1–14 (2023)

  24. Yu, Y., Yin, T.-C.: Strong convergence theorems for a nonmonotone equilibrium problem and a quasi-variational inclusion problem. J. Nonlinear Convex Anal. 25, 503–512 (2024)

    MathSciNet  Google Scholar 

  25. Yu, Y., Zhao, Y., Yin, T.-C.: Convergence of extragradient-type methods for fixed point problems and quasimonotone variational inequalities. J. Nonlinear Convex Anal. 24, 2225–2237 (2023)

    MathSciNet  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Furkan.

Ethics declarations

Conflict of interest

No potential Conflict of interest was reported by the author(s).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Husain, S., Khairoowala, M.U. & Furkan, M. Inertial modified S-iteration method for Cayley inclusion problem and fixed point problem. J. Appl. Math. Comput. 70, 5443–5457 (2024). https://doi.org/10.1007/s12190-024-02185-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-024-02185-2

Keywords

Mathematics Subject Classification

Navigation