Skip to main content
Log in

Stochastic optimal control model for COVID-19: mask wearing and active screening/testing

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

The main objective of this article is to study the effectiveness of wearing masks and implementing active screening and testing to contain the spread of COVID-19 during stages when the disease has already started to spread. This work innovates by focusing on the basic measures of mask use and active screening and testing, which are frequently overlooked in the literature in favor of more expensive interventions like travel bans and vaccinations. We study their effectiveness and determine the optimal way to implement them. To achieve this goal, we develop a stochastic SEIR model that includes four populations: susceptible, exposed, infected, and recovered individuals. We integrate two control functions into the model to represent mask-wearing and active screening and testing interventions. Using an adapted formulation of Pontryagin’s maximum principle suitable for the stochastic context, we aim to find the optimal approach to implementing these controls. We combine the Forward-Backward Sweep Method (FBSM) with a special Runge–Kutta scheme for stochastic differential equations to solve the optimality system for our stochastic optimal control problem. Our study demonstrates that even when the disease has begun to spread, using both mask-wearing and active screening and testing can lead to significant reductions in the numbers of exposed and infected individuals, offering a cost-effective strategy for countries with limited resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Algorithm 1
Algorithm 2

Similar content being viewed by others

References

  1. Russell, J.Z., Cheryl, B.: COVID-19 generation: a conceptual framework of the consumer behavioral shifts to be caused by the COVID-19 pandemic. J. Int. Consum. Mark. 33, 58–67 (2021)

    Google Scholar 

  2. Gossling, S., Scott, D., Hall, C.M.: Pandemics, tourism and global change: a rapid assessment of COVID-19. J. Sustain. Tour. 29, 1–20 (2021)

    Google Scholar 

  3. Altig, D., et al.: Economic uncertainty before and during the COVID-19 pandemic. J. Public Econ. 191, 104274 (2020)

    Google Scholar 

  4. Eric, R., Angelina, R.S., Michael, D., Andrew, J.A.: Systematic review and meta-analysis of longitudinal cohort studies comparing mental health before versus during the COVID-19 pandemic in 2020. J. Affect. Disord. 296, 567–576 (2022)

    Google Scholar 

  5. Kermack, W.O., McKendrick, A.G.: Contributions to the mathematical theory of epidemics part 1. Proc. Royal Soc. London Series A Math. Phys. Sci. 115, 700–721 (1927)

    Google Scholar 

  6. Wenjun, M., Shadi, M., Sandro, Z., Francesco, B.: On the dynamics of deterministic epidemic propagation over networks. Annu. Rev. Control. 44, 116–128 (2017)

    Google Scholar 

  7. Kumar, A., Goel, K., Nilam, A.: Deterministic time-delayed SIR epidemic model: mathematical modeling and analysis. Theory Biosci. 139, 67–76 (2020)

    Google Scholar 

  8. Laaroussi, A.E., El Bhih, A., Rachik, M.: Optimal vaccination and treatment policies with constrained inequalities to study limited vaccination resources for a multistrain reaction-diffusion SEIR model of COVID-19. Partial Differ. Equ. Appl. Math. 10, 100684 (2024)

    Google Scholar 

  9. El Bhih, A., Yaagoub, Z., Rachik, M., et al.: Controlling the dissemination of rumors and antirumors in social networks: a mathematical modeling and analysis approach. Eur. Phys. J. Plus. 139, 118 (2024)

    Google Scholar 

  10. Zouhri, S., El Baroudi, M.: Mathematical formalism for agent-based model of proteins interaction inside cancer cell. Communications in Mathematical Biology and Neuroscience. 2023 (2023)

  11. Angstmann, C.N., Henry, B.I., McGann, A.V.: A fractional order recovery SIR model from a stochastic process. Bull. Math. Biol. 78, 468–499 (2016)

    MathSciNet  Google Scholar 

  12. Hattaf, K., Mahrouf, M., Adnani, J., Yousfi, N.: Qualitative analysis of a stochastic epidemic model with specific functional response and temporary immunity. Physica A 490, 591–600 (2018)

    MathSciNet  Google Scholar 

  13. Linda, J.S.A.: A primer on stochastic epidemic models: formulation, numerical simulation, and analysis. Infect. Dis. Modell. 2, 128–142 (2017)

    Google Scholar 

  14. Elqaddaoui, A., El Bhih, A., Laarabi, H., Rachik, M., Abta, A.: A stochastic optimal control strategy for multi-strain COVID-19 spread. Communications in Mathematical Biology and Neuroscience. 2023 (2023)

  15. Zouhri, S., Saadi, S., Rachik, M.: Simulation of tumor response to immunotherapy using a hybrid cellular automata model. Int. J. Appl. Comput. Math. 3, 1077–1101 (2017)

    MathSciNet  Google Scholar 

  16. Wei, Z., Li, Y., Kapitaniak, T., Zhang, W.: Analysis of chaos and capsizing of a class of nonlinear ship rolling systems under excitation of random waves. Chaos. 34, 043106 (2024)

    MathSciNet  Google Scholar 

  17. Wei, Z., Li, Y., Moroz, I., Zhang, W.: Melnikov-type method for a class of planar hybrid piecewise-smooth systems with impulsive effect and noise excitation: Heteroclinic orbits. Chaos. 32, 103127 (2022)

    MathSciNet  Google Scholar 

  18. Li, Y., Wei, Z.: Dynamics and optimal control of a stochastic coronavirus (COVID-19) epidemic model with diffusion. Nonlinear Dyn. 109, 91–120 (2022)

    Google Scholar 

  19. Zouhri, S., El Baroudi, M., Saadi, S.: Optimal control with isoperimetric constraint for chemotherapy of tumors. Int. J. Appl. Comput. Math. 8, 215 (2022)

    MathSciNet  Google Scholar 

  20. Zouhri, S., El Baroudi, M.: Free end-time optimal control problem for cancer chemotherapy. Differential Equations and Dynamical Systems. (2023)

  21. Zouhri, S., Saadi, S., Elmouki, I., Hamdache, A., Rachik, M.: Mixed immunotherapy and chemotherapy of tumors: optimal control approach. Int. J. Comput. Sci. Issues. 10, 81 (2013)

    Google Scholar 

  22. Roshanfekr, M., Farahi, M.H., Rahbarian, R.A.: Different approach of optimal control on an HIV immunology model. Ain Shams Eng. J. 5, 213–219 (2014)

    Google Scholar 

  23. Zhou, Y., Liang, Y., Wu, J.: An optimal strategy for HIV multitherapy. J. Comput. Appl. Math. 263, 326–337 (2014)

    MathSciNet  Google Scholar 

  24. Ding, C., Tao, N., Zhu, Y.: A mathematical model of Zika virus and its optimal control. 35th Chinese Control Conference (CCC), Chengdu, China. 2642-2645 (2016)

  25. Kim, B.N., Nah, K., Chu, C., Ryu, S.U., Kang, Y.H., Kim, Y.: Optimal Control Strategy of Plasmodium vivax Malaria Transmission in Korea. Osong Public Health Res. Perspect. 3, 128–136 (2012)

    Google Scholar 

  26. Prosper, O., Ruktanonchai, N., Martcheva, M.: Optimal vaccination and bednet maintenance for the control of malaria in a region with naturally acquired immunity. J. Theor. Biol. 353, 142–156 (2014)

    MathSciNet  Google Scholar 

  27. Jung, E., Lenhart, S., Feng, Z.: Optimal control of treatments in a two-strain tuberculosis model. Dis. Contin. Dyn. Syst. B. 2, 473–482 (2002)

    MathSciNet  Google Scholar 

  28. Moualeu, D.P., Weiser, M., Ehrig, R., Deuflhard, P.: Optimal control for a tuberculosis model with undetected cases in Cameroon. Commun. Nonlinear Sci. Numer. Simul. 20, 986–1003 (2015)

    MathSciNet  Google Scholar 

  29. Rawson, T., Brewer, T., Veltcheva, D., Huntingford, C., Bonsall, M.B.: How and when to end the COVID-19 lockdown: an optimization approach. Front. Public Health. 8, 262 (2020)

    Google Scholar 

  30. Matralt, L., Eaton, J., Leung, T., Brown, E.R.: Vaccine optimization for COVID-19: Who to vaccinate first. Sci. Adv. 7, eabf1374 (2021)

    Google Scholar 

  31. Rachah, A., Torres, D.F.M.: Mathematical modelling, simulation, and optimal control of the 2014 Ebola outbreak in West Africa. Dis. Dyn. Nat. Soc. 9, 842792 (2015)

    MathSciNet  Google Scholar 

  32. Jung, E., Iwami, S., Takeuchi, Y., Jo, T.C.: Optimal control strategy for prevention of avian influenza pandemic. J. Theor. Biol. 260, 220–229 (2009)

    MathSciNet  Google Scholar 

  33. Su, Y., Sun, D.: Optimal control of anti-HBV treatment based on combination of traditional Chinese medicine and Western medicine. Biomed. Signal Process. Control 15, 41–48 (2015)

    Google Scholar 

  34. Lowden, J., Miller, N.R., Yahdi, M.: Optimal control of vancomycin-resistant enterococci using preventive care and treatment of infections. Math. Biosci. 249, 8–17 (2014)

    MathSciNet  Google Scholar 

  35. Okuonghae, D., Omame, A.: Analysis of a mathematical model for COVID-19 population dynamics in Lagos Nigeria. Chaos Solitons and Fractals. 139, 110032 (2020)

    MathSciNet  Google Scholar 

  36. Kaitlyn, M., Peter, A.M.: Mathematical modelling of the spread of COVID-19 on a university campus. Infect. Dis. Modell. 6, 1025–1045 (2021)

    Google Scholar 

  37. Stutt Richard, O.J.H., Retkute, R., Bradley, M., Gilligan Christopher, A., Colvin, J.A.: A modelling framework to assess the likely effectiveness of facemasks in combination with lock-down in managing the COVID-19 pandemic. Proc. Royal Soc. A. 476, 20200376 (2020)

    MathSciNet  Google Scholar 

  38. Martcheva, M.: An Introduction to Mathematical Epidemiology. Springer, New York (2015)

    Google Scholar 

  39. Peng, S.: A general stochastic maximum principle for optimal control problems. SIAM J. Control. Optim. 28, 966–979 (1990)

    MathSciNet  Google Scholar 

  40. Yong, J., Zhou, X.Y.: Stochastic controls: Hamiltonian systems and HJB equations. Stochastic Modelling and Applied Probability. 43 (1999)

  41. Franco, D., Nieto, J.J., Oregan, D.: Existence of solutions for first order ordinary differential equations with nonlinear boundary conditions. Appl. Math. Comput. 153, 793–802 (2004)

    MathSciNet  Google Scholar 

  42. Lukes, D.: Differential Equations: Classical to Controlled. Academic Press, New York (1982)

    Google Scholar 

  43. Ma, J., Protter, P., Yong, J.: Solving forward backward stochastic differential equations explicitly: a four step scheme. Probab. Theory Relat. Fields 98, 339–359 (1994)

    MathSciNet  Google Scholar 

  44. Ladyzhenskaya, O.A., Solonnikov, V.A., Uralceva, N.N.: Linear and quasi-linear equations of parabolic type. Translations of Mathematical Monographs. 23 (1968)

  45. Carletti, M.: Numerical solution of stochastic differential problems in biosciences. Comput. Optim. Appl. 3, 207–226 (2012)

    Google Scholar 

  46. Afanas’ev, V.N., Kolmanowskii, V.B., Nosov, V.R.: Mathematical Theory of Control Systems Design. Mathematics and its applications. 341 (1996)

  47. Khasminskii, R.: Stochastic Stability of Differential Equations Stochastic Modelling and Applied Probability. Springer-Verlag, Berlin Heidelberg (2012)

    Google Scholar 

  48. Zhang, W., Xie, L., Chen, B.-S.: Stochastic \(H_{2}/H_{\infty }\) Control: A Nash Game Approach. CRC Press, Boca Raton (2017)

    Google Scholar 

  49. Deng, H., Krstic, M., Williams, R.J.: Stabilization of stochastic nonlinear systems driven by noise of unknown covariance. In IEEE Trans. Autom. Control 46, 1237–1253 (2001)

    MathSciNet  Google Scholar 

  50. Lenhart, S., Workman, J.T.: Optimal Control Applied to Biological Models. Chapman and Hall/CRC Mathematical and Computational Biology Series. (2007)

  51. Rumelin, W.: Numerical treatment of stochastic differential equations. SIAM J. Numer. Anal. 19, 604–613 (1982)

    MathSciNet  Google Scholar 

  52. World Health Organization. Morocco. Retrieved from covid19.who.int/region/emro/country/ma (n.d.)

  53. Diawara, I., Benrahma, H., Nida, M., Rahoui, J., Moujid, F.Z., Jaras, K., Benmessaoud, R., Arouro, K., Aadam, Z., Nahir, S., Aouzal, Z., Elguezzar, H., Jeddan, L., Rida, H., Ousti, F., El Bakkouri, J., Smyej, I., Nejjari, C.: A laboratory-based study of COVID-19 in Casablanca, Morocco. J. Public Health Africa. 12, 1458 (2021)

    Google Scholar 

  54. Layati, E., Ouigmane, A., Ouhsine, O., et al.: Modeling of coronavirus spread in Morocco using statistical approach: SIR model. J. Environ. Treat. Tech. 9, 594–600 (2021)

    Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohcine El Baroudi.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest regarding this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Baroudi, M., Laarabi, H., Zouhri, S. et al. Stochastic optimal control model for COVID-19: mask wearing and active screening/testing. J. Appl. Math. Comput. 70, 6411–6441 (2024). https://doi.org/10.1007/s12190-024-02220-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-024-02220-2

Keywords

Navigation