Skip to main content
Log in

Numerical simulations of Rosenau–Burgers equations via Crank–Nicolson spectral Pell matrix algorithm

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

The current work addresses the use of the numerical Crank–Nicolson technique along with spectral collocation to seek the approximate solution of a class of high-order nonlinear partial differential equations known as the Rosenau–Burgers equation. First, the Crank–Nicolson approach is applied to reduce the Rosenau–Burgers equation to a set of linear equations. The solvability and uniqueness of the semi-discretized form is established. Then, the spectral based collocation method by using the Pell functions is employed to approximate the derived system of linearized equations in terms of unknown coefficients. The theoretical part and error analysis are comprehensively studied in the weighted \(L^2\)-norm. Finally, four illustrative test cases are conducted to showcase the efficiency of the suggested combined technique. The results are well compared with existing results and exact solutions in the literature to demonstrate the advantages of the applied novel approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availibility

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Barenblatt, G.I.: On some unsteady motions of fluids and gases in a porous medium. Prikl Mat. Mekh. 16, 67–78 (1952)

    MATH  Google Scholar 

  2. Betelú, S.: A two-dimensional corner solution for a nonlinear diffusion equation. Appl. Math. Lett. 13, 119–123 (2000)

    MathSciNet  MATH  Google Scholar 

  3. Lewis, F.L.: A review of 2-D implicit systems. Automatica 28(2), 345–354 (1992)

    MathSciNet  MATH  Google Scholar 

  4. Marszalek, W.: Two-dimensional state-space discrete models for hyperbolic partial differential equations. Appl. Math. Model. 8, 11–14 (1984)

    MathSciNet  MATH  Google Scholar 

  5. Park, M.A.: On the Rosenau equation in multidimensional space. Nonlinear Anal., T.M.A. 21, 77-85 (1993)

  6. Rosenau, P.: A quasi-continuous description of a nonlinear transmission line. Phys. Scr. 34, 827–829 (1986)

    MATH  Google Scholar 

  7. Rosenau, P.: Dynamics of dense discrete systems. Progr. Theor. Phys. 79, 1028–1042 (1988)

    MATH  Google Scholar 

  8. Omrani, K., Abidi, F., Achouri, T., Khiari, N.: A new conservative finite difference scheme for the Rosenau equation. Appl. Math. Comput. 201, 35–43 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Chung, S.K.: Finite difference approximate solutions for the Rosenau equation. Appl. Anal. 69(1–2), 149–156 (1998)

    MathSciNet  MATH  Google Scholar 

  10. Chung, S.K., Pani, A.K.: Numerical methods for the Rosenau equation. Appl. Anal. 77, 35–369 (2001)

    MathSciNet  MATH  Google Scholar 

  11. Kim, Y.D., Lee, H.Y.: The convergence of finite element Galerkin solution for the Rosenau equation. Korean J. Comput. Appl. Math. 5, 171–180 (1998)

    MathSciNet  MATH  Google Scholar 

  12. Manickam, S.A., Pani, A.K., Chung, S.K.: A second order splitting combined with orthogonal cubic spline collocation method for the Rosenau equation. Numer. Methods Partial Differ. Equ. 14, 695–716 (1998)

    MathSciNet  MATH  Google Scholar 

  13. Liu, L., Mei, M., Wong, Y.S.: Asymptotic behavior of solutions to the Rosenau-Burgers equation with a periodic initial boundary. Nonlinear Anal. 67, 2527–2539 (2007)

    MathSciNet  MATH  Google Scholar 

  14. Liu, L., Mei, M.: A better asymptotic profile of Rosenau-Burgers equation. Appl. Math. Comput. 131, 147–170 (2002)

    MathSciNet  MATH  Google Scholar 

  15. Mei, M.: Long-time behavior of solution for Rosenau-Burgers equation (I). Appl. Anal. 63, 315–330 (1996)

    MathSciNet  MATH  Google Scholar 

  16. Mei, M.: Long-time behavior of solution for Rosenau-Burgers equation (II). Appl. Anal. 68, 333–356 (1998)

    MathSciNet  MATH  Google Scholar 

  17. Hu, B., Xu, Y., Hu, J.: Crank-Nicolson finite difference scheme for the Rosenau-Burgers equation. Appl. Math. Comput. 204, 311–316 (2008)

    MathSciNet  MATH  Google Scholar 

  18. Shen, X., Zhu, A.: A Crank-Nicolson linear difference scheme for a BBM equation with a time fractional nonlocal viscous term. Adv. Differ. Equ. 2018, 351 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Pan, X., Zhang, L.: A new finite difference scheme for the Rosenau–Burgers equation. Appl. Math. Comput. 218(17), 8917–8924 (2012)

    MathSciNet  MATH  Google Scholar 

  20. Xue, G.-Y., Zhang, L.: A new finite difference scheme for generalized Rosenau-Burgers equation. Appl. Math. Comput. 222, 490–496 (2013)

    MathSciNet  MATH  Google Scholar 

  21. Janwised, J., Wongsaijai, B., Mouktonglang, T., Poochinapan, K.: A modified three-level average linear-implicit finite difference method for the Rosenau-Burgers equation. Adv. Math. Phys. 2014, 734067 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Wang, J.: Numerical analysis of a mixed finite element method for Rosenau-Burgers equation. International Industrial Informatics and Computer Engineering Conference (IIICEC 2015) pp. 610-614, Atlantis Press

  23. Piao, G.-R., Lee, J.-Y., Cai, G.-X.: Analysis and computational method based on quadratic B-spline FEM for the Rosenau-Burgers equation. Numer. Methods Partial Differ. Equs. 32(3), 877–895 (2016)

    MathSciNet  MATH  Google Scholar 

  24. Xu, G.X., Li, C.H., Piao, G.R.: Cubic B-spline finite element method for the Rosenau-Burgers equation. East Asian Math. J. 33(1), 53–65 (2017)

    MATH  Google Scholar 

  25. Guo, C., Xue, W., Wang, Y., Zhang, Z.: A new implicit nonlinear discrete scheme for Rosenau-Burgers equation based on multiple integral finite volume method. AIP Adv. 10, 045125 (2020)

    MATH  Google Scholar 

  26. Hasan, M.T., Xu, C.: The stability and convergence of time-stepping/spectral methods with asymptotic behaviour for the Rosenau-Burgers equation. Appl. Anal. 99(12), 2013–2025 (2020)

    MathSciNet  MATH  Google Scholar 

  27. Omrani, K., Debebria, H., bayarassou, K.: On the numerical solution of two-dimensional Rosenau-Burgers (RB) equation. Eng. Comput. 38, 715-726 (2022)

  28. Abazari, R., Yildirim, K.: Quintic B-spline method for numerical solution of the Rosenau-Burgers equation. Sigma J. Eng. Nat. Sci. 37(3), 967–979 (2019)

    MATH  Google Scholar 

  29. Zürnaci, F., Seydağlu, M.: On the convergence of operator splitting for the Rosenau–Burgers equation. Numer. Methods Part Differ. Equ. 35(4), 1363–1382 (2019)

    MathSciNet  MATH  Google Scholar 

  30. Izadi, M., Srivastava, H.M.: Numerical treatments of nonlinear Burgers–Fisher equation via a combined approximation technique. Kuwait J. Sci. 51(2), 100163 (2024)

    MathSciNet  MATH  Google Scholar 

  31. Srivastava, H.M., Izadi, M.: The Rothe–Newton approach to simulate the variable coefficient convection-diffusion equations. J. Mahani Math. Res. 11(2), 141–157 (2022)

    MATH  Google Scholar 

  32. Ahmed, H.M.: New generalized Jacobi Galerkin operational matrices of derivatives: an algorithm for solving multi-term variable-order time-fractional diffusion-wave equations. Fractal Fract. 8(1), 68 (2024)

    MATH  Google Scholar 

  33. Soufivand, F., Soltanian, F., Mamehrashi, K.: A numerical approach for solving a class of two-dimensional variable-order fractional optimal control problems using Gegenbauer operational matrix. IMA J. Math. Control Infor. 40(1), 1–19 (2023)

    MathSciNet  MATH  Google Scholar 

  34. Yadav, P., Jahan, S., Nisar, K.S.: Fibonacci wavelet method for time fractional convection-diffusion equations. Math. Meth. Appl. Sci. 47(4), 2639–2655 (2024)

    MathSciNet  MATH  Google Scholar 

  35. Horadam, A.F., Mahon, J.M.: Pell and Pell-Lucas polynomials. Fibonacci Quart. 23(1), 7–20 (1985)

    MathSciNet  MATH  Google Scholar 

  36. Byrd, P.F.: Expansion of analytic functions in polynomials associated with Fibonacci numbers. Fibonacci Quart. 1(1), 16–27 (1963)

    MathSciNet  MATH  Google Scholar 

  37. Taghipour, M., Aminikhah, H.: Application of Pell collocation method for solving the general form of time-fractional Burgers equations. Math. Sci. 17, 183–201 (2023)

    MathSciNet  MATH  Google Scholar 

  38. Singh, P.K., Ray, S.S.: A numerical approach based on Pell polynomial for solving stochastic fractional differential equations. Numer. Algor. (2024). https://doi.org/10.1007/s11075-024-01760-9

    Article  MathSciNet  MATH  Google Scholar 

  39. Yadav, P., Jahan, S., Izadi, M.: Taylor wavelet quasilinearization method for solving tumor growth model of fractional order. Results Control Optim. 15, 100437 (2024)

    MATH  Google Scholar 

  40. Izadi, M., Srivastava, H.M.: The reaction-diffusion models in biomedicine: highly accurate calculations via a hybrid matrix collocation algorithm. Appl. Sci. 13(21), 11672 (2023)

    MATH  Google Scholar 

  41. Avcı, I.: Spectral collocation with generalized Laguerre operational matrix for numerical solutions of fractional electrical circuit models. Math. Model. Numer. Simul. Appl. 4(1), 110–132 (2024)

    MATH  Google Scholar 

  42. Izadi, M., Srivastava, H.M.: Generalized Bessel quasilinearization technique applied to Bratu and Lane-Emden-type equations of arbitrary order. Fractal Fract. 5(4), 179 (2021)

    MATH  Google Scholar 

  43. Ahmed, H.M.: Enhanced shifted Jacobi operational matrices of integrals: spectral algorithm for solving some types of ordinary and fractional differential equations. Bound. Value Prob. 2024, 75 (2024)

    MathSciNet  MATH  Google Scholar 

  44. Srivastava, H.M., Izadi, M.: Generalized shifted airfoil polynomials of the second kind to solve a class of singular electrohydrodynamic fluid model of fractional order. Fractal Fract. 7(1), 7 (2023)

    MATH  Google Scholar 

  45. Izadi, M., Waezizadeh, T.: Stability analysis and numerical evaluations of a COVID-19 model with vaccination. BMC Med. Res. Methodol. 24, 97 (2024)

    MATH  Google Scholar 

  46. Rivlin, T.J.: An Introduction to the Approximation of Functions. Dover Publications, New York (1981)

    MATH  Google Scholar 

  47. Almuthaybiri, S.S., Tisdel, C.C.: Sharper existence and uniqueness results for solutions to fourth-order boundary value problems and elastic beam analysis. Open Math. 18, 100–1024 (2020)

    MathSciNet  MATH  Google Scholar 

  48. Browder, F.E.: Existence and uniqueness theorems for solutions of nonlinear boundary value problems. Proc. Symp. Appl. Math. 17, 24–49 (1965)

    MathSciNet  MATH  Google Scholar 

  49. Rouatbi, A., Rouis, M., Omrani, K.: Numerical scheme for a model of shallow water waves in \((2+1)\)-dimensions. Comput. Math. Applic. 74(8), 1871–1884 (2017)

    MathSciNet  MATH  Google Scholar 

  50. Rouatbi, A., Ghiloufi, A., Omrani, K.: An efficient tool for solving the Rosenau–Burgers equation in two dimensions. Comp. Appl. Math. 41(5), 210 (2022)

    MathSciNet  MATH  Google Scholar 

  51. Luo, S., He, Y., Ling, Y.: Generalized high-order compact difference schemes for the generalized Rosenau-Burgers equation. Comp. Appl. Math. 43(6), 322 (2024)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to express his thank to the anonymous referees whose constructive comments improved the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Izadi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izadi, M., Srivastava, H.M. & Mamehrashi, K. Numerical simulations of Rosenau–Burgers equations via Crank–Nicolson spectral Pell matrix algorithm. J. Appl. Math. Comput. 71, 1009–1033 (2025). https://doi.org/10.1007/s12190-024-02273-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-024-02273-3

Keywords

Mathematics Subject Classification