Skip to main content
Log in

A classification of methods for efficient power amplification of signals

  • Original Paper
  • Published:
annals of telecommunications - annales des télécommunications Aims and scope Submit manuscript

Abstract

This paper presents a classification of methods that have been proposed to address nonlinear power amplification of highly fluctuating signals in telecommunications. The classification proposed uses a tree-like representation wherein each branch refers to a group of methods that all have a common characteristic. By virtue of this representation, each node corresponds to a test used to discriminate between different methods. From top to bottom, these tests are “What is the target of the method?,” Is the method downward-compatible?,” “Is the bit error rate degraded?,” “Is there a useful data rate loss?,” and “Does the method require changes in the amplification function?” By collating all these requirements, an original classification is proposed that is open enough to allow new methods to be added. It only concerns methods located either only at the transmitter or at both transmitter and receiver. The context of this study generally concerns multicarrier signals (especially orthogonal frequency division modulation) but can be applied to any multiplex of modulated signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Jiang T, Yang Y, Song YH (2005) Exponential companding technique for PAPR reduction in OFDM systems. IEEE Trans Broadcast 51(2):244–248

    Article  Google Scholar 

  2. Han SH, Lee JH (2005) An overview of peak to average power ratio reduction techniques for multicarrier transmission. IEEE Wireless Communications, pp 56–65, April

  3. Nikoobar H, Lidsheim KS (2002) Random phase algorithm for OFDM transmission with low PAPR. IEEE Trans Broadcast 48(2):123–128

    Article  Google Scholar 

  4. Ochiai H, Imai H (1998) Peak power reduction schemes on OFDM systems: a review. Proceedings of the WPMC ’98, Japan, pp 247–252

  5. Litsyn S (2007) Peak power control in multicarrier communications. Cambridge University Press, Cambridge

    Google Scholar 

  6. Wang L, Tellambura C (2006) An overview of peak to average power ratio reduction techniques for OFDM systems. IEEE International Symposium on Signal Processing and Information Technology, Vancouver, British Columbia, Canada

  7. Wilkinson TA, Jones AE (1995) Minimisation of the peak-to-mean envelope power ratio of multicarrier transmission schemes by block coding. Proc IEEE VTC 95, Chicago, IL, pp 825–829

  8. Weinfurtner SHM (2001) Optimum Nyquist windowing in OFDM receivers. IEEE Trans Commun 49(3):417–420

    Article  MATH  Google Scholar 

  9. Muller SH, Huber JB (1997) OFDM with reduced peak to average power ratio by optimum combination of partial transmit sequences. Electron Lett 33(5):368–369

    Article  Google Scholar 

  10. Bäuml R, Fischer R, Huber J (1996) Reducing the peak-to-average power ratio of multicarrier modulation by selecting mapping. Electron Lett 32(22):2056–2057

    Article  Google Scholar 

  11. Nikoobar H, Lidsheim KS (2002) Random phase updating algorithm for OFDM transmission with low PAPR. IEEE Trans Broadcast 48(2):123–128

    Article  Google Scholar 

  12. Tellado J (2000) Peak to average power reduction for multicarrier modulation. PhD dissertation, Stanford University, Stanford, USA

  13. Wang X, Tjhung T, Ng CS (1999) Reduction of peak to average power ratio of OFDM system using a companding technique. IEEE Trans Broadcast 45(3):303–307

    Article  MATH  Google Scholar 

  14. Stuber GL, Kim D (1999) Clipping noise mitigation for OFDM by decision aided reconstruction. IEEE Commun Lett 3(1):4–6

    Article  Google Scholar 

  15. Van Nee RJ, De Wild A (1996) Reducing peak-to-average power ratio of OFDM. Proc IEEE VTC 96, Atlanta, GA, pp 2072–2076

  16. Prasad R, van Nee RJ (1999) OFDM for wireless multimedia communications. Artech House, Boston, MA

    Google Scholar 

  17. Muta O et al (1999) Peak power suppression with parity carrier for multicarrier transmission. Proc. IEEE VTC 99, Amsterdam, The Netherlands, pp 2923–2928

  18. Nikoobar H, Prasad R (2000) Weighted multicarrier modulation for peak to average power reduction. IEICE Trans Commun, vol. E83B, August

  19. Chu YS et al (1999) On compensating nonlinear distortions of an OFDM system using efficient an adaptive predistorter. IEEE Trans Commun 47(4):522–526

    Article  Google Scholar 

  20. Huang X, Lu J, Zheng J, Letaief KB, Gu J (2004) Companding transform for reduction in peak to average power ratio of OFDM signals. IEEE Trans Wireless Commun 03(n°6):2030–2039

    Article  Google Scholar 

  21. Palicot J, Zabre S (2004) PAPR analysis of a multiplex of modulated carriers in a software radio context. Frequenz 58:5–6

    Google Scholar 

  22. Louët Y, Palicot J (2005) Synthèse de la notion de facteur de crête et application aux modulations monoporteuse. GRETSI, Louvain La Neuve, Belgium

    Google Scholar 

  23. Thompson C, Proakis J, Zeidler JR (2005) The effectiveness of signal clipping for PAPR and total degradation reduction in OFDM systems. Proc IEEE Globecom 2005, St Louis, MO, pp 2807–2811

  24. Li X, Cimini L (1998) Effects of clipping and filtering on the performance of OFDM. Electron Lett 2(5):131–133

    MATH  Google Scholar 

  25. Armstrong J (2001) New OFDM peak-to-average power reduction scheme. Proc IEEE VTC 01, Atlantic City, USA, pp 756–760

  26. Zabre S, Palicot J, Louët Y, Lereau C (2006) SOCP approach for OFDM peak-to-average power ratio reduction in the signal adding context. IEEE International Symposium on Signal Processing and Information Technology, Vancouver, British Columbia, Canada

  27. Chireix H (1935) High power outphasing modulation. Proc IRE 23(II):1370–1392

    Article  Google Scholar 

  28. Casadevall F, Olmos JJ (1990) On the behavior of the LINC transmitter. Proc IEEE VTC 90, Orlando, USA, pp 29–34, May

  29. Han SH, Lee JH (2003) Peak to average power reduction of an OFDM signal by PAPR reduction sub carriers. Proc Globecom 2003, San Francisco, USA

  30. Bernoux JP, Palicot J, Veillard J (1995) Dispositif Adaptatif de Prédistorsion pour Amplificateur LINC, GRETSI, Juan les Pins, France

  31. Bateman A (1992) The combined analogue locked loop universal modulator (CALLUM). Proc VTC 92, Denver, USA, pp 759–763

  32. Kahn LR (1952) Single sideband transmission by envelope elimination and restoration. Proceedings of the Institute of Radio Engineers 40(22):803–806

    Google Scholar 

  33. Wilkinson TA, Jones AE (1995) Minimisation of peak to mean envelope power ratio of multicarrier transmission schemes by block coding. Proceedings of VTC 95, Chicago, USA, pp 825–829, July

  34. van Nee RJ (1996) OFDM codes for peak to average power reduction and error correction. in Proc. Globecom 1996, London, UK

  35. Davis JA, Jedwab J (1999) Peak-to-mean power control in OFDM, Golay complementary sequences and Reed–Muller codes. IEEE Trans Inf Theory 45(7):2397–2417

    Article  MATH  MathSciNet  Google Scholar 

  36. Louët Y, Le Glaunec A (2000) Peak-factor reduction in OFDM by Reed–Muller channel coding: a new soft decision decoding algorithm. Proc IEEE MELECON 2000, Cyprus 2:872–875, May

    Google Scholar 

  37. Slimane SB (2000) Peak to average power ratio reduction of OFDM signals using pulse shaping. in Proc Globecom 2000, San Francisco, USA

  38. Jian Y, Zang Z, Yan WY (2005) PAPR distribution analysis of OFDM signals with pulse shaping. Asia Pacific Conference on Communications, Perth, Western Australia

    Google Scholar 

  39. Wang X, Tjhung T, Ng CS (1999) Reduction of peak to average power ratio of OFDM system using a companding technique. IEEE Trans Broad 45(3):303–307

    Article  MATH  Google Scholar 

  40. Jiang T, Zhu G (2004) Nonlinear companding transform for reducing peak to average power ratio of OFDM signals. IEEE Trans Broadcast 50(n°3):342–346

    Article  Google Scholar 

  41. Park M et al (2000) PAPR reduction in OFDM transmission using Hadamard transform. Proc ICC 2000, New Orleans, USA, pp 430–433

  42. Palicot J, Louët Y (2005) Power ratio definitions and analysis in single carrier modulation. Proc. EUSIPCO 05, Antalya, Turkey, Sep

  43. Ochiai H, Imai H (2001) On the distribution of the peak to average power ratio in OFDM Signals. IEEE Trans Commun 49(2):282–289

    Article  MATH  Google Scholar 

  44. Pauli P, Kuchenbecker HP (1996) Minimization of the intermodulation distortion of a nonlinearly amplified OFDM signal. Proc Wireless Personal Commun 4:93–101

    Article  Google Scholar 

  45. van Nee RJ, De Wild A (1998) Reducing the peak to average power ratio of COFDM. ProcVTC 98, Ottawa, Canada, pp 2072–2076

  46. Tellambura C, Jayalath A (2001) PAR reduction of an OFDM signal using partial transmit sequences. Proc VTC 2001, Atlantic City, USA, pp 465–469

  47. Morrison IS (1992) Trellis shaping applied to reducing the envelope fluctuations of MQAM and band limited MPSK. Proc. ICDSC’92, pp 143–149

  48. Henkel W, Wagner B (2000) Another application for trellis shaping: PAR reduction for DMT (OFDM). IEEE Trans Commun 48:1471–1476

    Article  Google Scholar 

  49. Ochiai H (2004) A novel trellis shaping design with both peak and average power reduction for OFDM systems. IEEE Trans Commun 52(11):1916–1926

    Article  Google Scholar 

  50. Ragusa S, Palicot J, Lereau C (2006) Performance improvement of deliberately clipped OFDM signals with an invertible clipping function. Proc. IST Mobile Summit 06, Mykonos, Greece

  51. Ragusa S, Palicot J, Louët Y, Lereau C (2006) Invertible clipping for increasing the power efficiency of OFDM amplification. Proc. ICT 06, Madeira Island, Portugal

  52. Macleod J, Beach M et al (1999) IST-TRUST, 1999–12070, Deliverable 3.1.1.

  53. Bateman A, Haines DM, Wilkinson RJ (2001) Linear transceiver architectures. Proc. VTC 2001, Rhodes, Greece, pp 478–484

  54. Karam G, Sari H (1989) Analysis of predistortion, equalization and ISI cancellation techniques in digital radio systems with non linear transmit amplifiers. Proc IEEE Trans Commun 37(12):1245–1253

    Article  Google Scholar 

  55. Jardin P, Baudoin G (2007) Filter look up table method for power amplifiers linearization. IEEE Trans Veh Technol 56:1076–1087

    Article  Google Scholar 

  56. Sundström L (1995) Digital RF power amplifier linearisers: analysis and design. PhD dissertation, Department of Applied Electronics, Lund University, Sweden

  57. Terman FE, Buss RR (1941) Some notes on linear and grid-modulated radio frequency amplifiers. Proc IRE 29:104–107

    Article  Google Scholar 

  58. Raab FH et al (2002) Power amplifier and transmitters for RF and microwave. IEEE Trans Microwave Theor Tech 50(3):814–826

    Article  Google Scholar 

  59. Cox DC (1975) Linear amplification by sampling techniques: a new application for delta coders. IEEE Trans Commun 23(8):793–798

    Article  Google Scholar 

  60. Mestdagh DJG, Spruyt PMP (1996) A method to reduce the probability of clipping in DMT-based transceivers. IEEE Trans Commun 44(1):1234–1238

    Article  Google Scholar 

  61. Van Eetvelt P, Wade G, Tomlinson M (1996) Peak to average power reduction for OFDM schemes by selective scrambling. Electron Lett 32:1963–1964

    Article  Google Scholar 

  62. Friese M (1997) OFDM signals with low crest factor. Proc. IEEE Globecom’97, Phoenix, USA, pp 290–294

  63. Wang L, Tellambura C (2006) An adaptive-scaling tone reservation algorithm for PAR reduction in OFDM systems. Proc. IEEE Globecom’06, San Francisco, USA

  64. Muller SH, Huber JB (1997) A novel peak power reduction scheme for OFDM. Proc PIMRC 97, Helsinki, Finland, pp 1090–1094

  65. ayalath A (2002) OFDM for wireless broadband communications (peak power reduction, spectrum and coding), PhD dissertation, Monash University, Australia

  66. Miller SL, O’Dea RJ (1998) Peak power and bandwidth efficient linear modulation. IEEE Trans Commun 46(12):1639–1648

    Article  Google Scholar 

  67. Aggarwal A, Meng T (2005) A convex interior-point method for optimal OFDM PAR reduction. Proc. ICC 05, Seoul, Korea, May

  68. Ochiai H, Imai H (2002) Performance analysis of deliberately clipped OFDM signals. IEEE Trans Commun 50(1):89–101

    Article  Google Scholar 

  69. Krongold BS, Jones DL (2003) PAR reduction in OFDM via active constellation extension. IEEE Trans Broadcast 49(3):258–268

    Article  Google Scholar 

  70. Sedra AS, Smith KC (1991) Microelectronics circuits, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  71. Raab FH et al (2002) Power amplifier and transmitters for RF and microwave. IEEE Trans Microwave Theor Tech 50(3):814–826

    Article  Google Scholar 

  72. MacLeod J et al (1999) Proposal and initial investigation of certain known and augmented analogue signal processing techniques for future flexible transceiver architectures. European IST TRUST Project, Deliverable D3.1.1, IST-1999-12070 TRUST

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Louët.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Louët, Y., Palicot, J. A classification of methods for efficient power amplification of signals. Ann. Telecommun. 63, 351–368 (2008). https://doi.org/10.1007/s12243-008-0035-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12243-008-0035-4

Keywords

Navigation