Skip to main content
Log in

An optimal OSA approach based on channel-usage estimate under collision probability constraint in cognitive radio systems

  • Published:
annals of telecommunications - annales des télécommunications Aims and scope Submit manuscript

Abstract

Opportunistic spectrum access system allows the secondary user to access spectrum holes not being utilized by the primary user. Traditional opportunistic spectrum access approaches only sense and utilize current spectrum holes. This can result in uncontrollable collision probability, which exceed the maximum collision probability allowed by the primary user network. In this paper, we consider a cognitive radio system with one primary channel and one secondary user, and then, we introduce a channel-usage pattern model and a fundamental access scheme in this system. Based on the fundamental access scheme, we adopt fixed detection duration and transmission duration ratio approach to analyze what and how to determine spectrum holes utilization and collision probability in this model. On the basis of this model and fundamental access scheme, we study optimal opportunistic spectrum access problem and formulate it as an optimization problem that the secondary user maximizes spectrum holes utilization under the constraint of collision tolerable level, and then we solve this optimization problem in two cases: one is that the idle period is exponential distribution, the other is that the idle period is Pareto distribution. According to the solution of the optimization problem, we respectively propose an optimal opportunistic spectrum access algorithm in each case. Theoretical analysis and simulation results both show that the optimal opportunistic spectrum access algorithms can maximize spectrum holes utilization under the constraint that the collision probability is bounded below collision tolerable level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. United State Frequency Allocation Chart. http://www.ntia.doc.gov/osmhome/allochrt.pdf

  2. SPTF (2002). Report of the spectrum efficiency working group, November

  3. M. McHenry (2003) Spectrum white space measurements, June. Presented to New America Foundation Broadband Forum; Measurements by Shared Spectrum Company. http://www.newamerica.net/Download_Docs/pds/Doc_File_185_1.pdf

  4. DARPA: The Next Generation (XG) Program. http://www.darpa.mil/ato/programs/xg/index.htm

  5. Kolodzy PJ (2006) Interference temperature: a metric for dynamic spectrum utilization. Int J Netw Manag 16(2):103–113

    Article  Google Scholar 

  6. Sahai A, Hoven N, Tandra R (2004) Some fundamental limits on cognitive radio. In: Forty-second Allerton Conference on Communication, Control and Computing, Monticello, IL, October

  7. Ganesan G, Li YG (2005) Cooperative spectrum sensing in cognitive radio networks. In: Proc. of IEEE DySPAN, November

  8. Ghasemi A, Sousa ES (2005) Collaborative spectrum sensing for opportunistic access in fading environments. In: Proc. of IEEE DySPAN

  9. Cabric D, Mishra SM, Brodersen RW (2004) Implementation issues in spectrum sensing for cognitive radios. In: Proc. of Asilomar conference on signals, systems and computers

  10. Fehske A, Gaeddert JD, Reed JH (2005) A new approach to signal classification using spectral correlation and neural networks. In Proc. of IEEE DySPAN

  11. Acharya PAK, Singh S, Zheng H (2006) Reliable open spectrum communications through proactive spectrum access. In: Proc. Of TAPAS

  12. Lei Y, Cao L, Zheng H (2007) Proactive channel access in dynamic spectrum networks. In: Proc. of CROWNCOM

  13. Huang S, Liu X, Ding Z (2008) Opportunistic spectrum access in cognitive radio networks. In: Proc. Of IEEE INFOCOM

  14. Hyoil K, Shin KG (2008) Efficient discovery of spectrum opportunities with MAC-layer sensing in cognitive radio networks. IEEE Trans Mobile Computing 7(5):533–545

    Article  Google Scholar 

  15. Haykin S (2005) Cognitive radio: brain-empowered wireless communications. IEEE J Sel Areas Commun 23(2):201–220

    Article  Google Scholar 

  16. Trivedi KS (1982) Probability and statistics with reliability, queuing and computer science applications. Prentice Hall, Eaglewood Cliffs, NJ

    Google Scholar 

  17. Geirhofer S, Tong L, Sadler BM (2006) A measurement-based model for dynamic spectrum access in WLAN channels. In: MILCOM 2006, pp 1–7, Oct

  18. Newman MEJ (2005) Power laws, pareto distributions and Zipf’s law. Contemp Phys 46(5):323–351

    Article  Google Scholar 

  19. Kotz S, Nadarajah S (2000) Extreme value distributions: theory and application. Imperial College, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghai Xiao.

Additional information

This work is partially supported by the National Basic Research Program of China (no. 2007CB310608), the National High Technology Research, Development (863) Program of China (no. 2007AA01Z2B6), and the National Natural Science Foundation of China (no. 90204001), and the Tsinghua-Fujitsu Joint Research Program.

Appendices

Appendix 1: proof of Proposition 1

In fixed DTR approach, the secondary user periodically keeps sensing for fixed detection duration D and then keeps transmitting for fixed transmission duration T in the duration of idle period.

The expectation access time of the (n + 1)th transmission duration (i.e., \( \left[ {\left( {n + 1} \right)D + nT,\left( {n + 1} \right)\left( {D + T} \right)} \right] \)) can be given as:

$$ \int_{{\left( {n + 1} \right)D + nT}}^{{\left( {n + 1} \right)\left( {D + T} \right)}} {\left[ {t - \left( {n + 1} \right)D - nT} \right]f\left( t \right)dt} + T\int_{{\left( {n + 1} \right)\left( {D + T} \right)}}^{\infty } {f\left( t \right)dt} . $$
(31)

Then, the expectation access time of the first M transmission durations can be obtained as follows:

$$ \sum\limits_{n = 0}^M {\left\{ {\int_{{\left( {n + 1} \right)D + nT}}^{{\left( {n + 1} \right)\left( {D + T} \right)}} {\left[ {t - \left( {n + 1} \right)D - nT} \right]f\left( t \right)dt} + T\int_{{\left( {n + 1} \right)\left( {D + T} \right)}}^{\infty } {f\left( t \right)dt} } \right\}} $$
(32)

and the expectation idle time of the first M detection and transmission durations can be given as:

$$ \sum\limits_{n = 0}^M {\left\{ {\int_{{n\left( {D + T} \right)}}^{{\left( {n + 1} \right)\left( {D + T} \right)}} {tf\left( t \right)dt} } \right\}} . $$
(33)

Thus, according to the definition of spectrum holes utilization, we can obtain spectrum holes utilization using fixed DTR approach as follows:

$$ \begin{array}{*{20}c} {\eta_{\text{SH}} = \mathop {\lim }\limits_{{M \to \infty }} \frac{{\sum\limits_{n = 0}^M {\left\{ {\int_{{\left( {n + 1} \right)D + nT}}^{{\left( {n + 1} \right)\left( {D + T} \right)}} {\left[ {t - \left( {n + 1} \right)D - nT} \right]f\left( t \right)dt} } \right\}} }}{{\sum\limits_{n = 0}^M {\left( {\int_{{n\left( {D + T} \right)}}^{{\left( {n + 1} \right)\left( {D + T} \right)}} {tf\left( t \right)dt} } \right)} }}} \\ { + \mathop {\lim }\limits_{{M \to \infty }} \frac{{\sum\limits_{n = 0}^M {\left\{ {T\int_{{\left( {n + 1} \right)\left( {D + T} \right)}}^{\infty } {f\left( t \right)dt} } \right\}} }}{{\sum\limits_{n = 0}^M {\left( {\int_{{n\left( {D + T} \right)}}^{{\left( {n + 1} \right)\left( {D + T} \right)}} {tf\left( t \right)dt} } \right)} }}} \\ { = \mathop {\lim }\limits_{{M \to \infty }} \frac{{\sum\limits_{n = 0}^M {\left\{ {\int_{{\left( {n + 1} \right)D + nT}}^{{\left( {n + 1} \right)\left( {D + T} \right)}} {tue^{- ut} dt + \int_{{\left( {n + 1} \right)D + nT}}^{{\left( {n + 1} \right)\left( {D + T} \right)}} {\left[ {\left( {n + 1} \right)D + nT} \right]ue^{- ut} dt} } } \right\}} }}{{\sum\limits_{n = 0}^M {\left( {\int_{{n\left( {D + T} \right)}}^{{\left( {n + 1} \right)\left( {D + T} \right)}} {ute^{- ut} dt} } \right)} }}} \\ { + \mathop {\lim }\limits_{{M \to \infty }} \frac{{\sum\limits_{n = 0}^M {\left\{ {T\int_{{\left( {n + 1} \right)\left( {D + T} \right)}}^{\infty } {ue^{- ut} dt} } \right\}} }}{{\sum\limits_{n = 0}^M {\left( {\int_{{n\left( {D + T} \right)}}^{{\left( {n + 1} \right)\left( {D + T} \right)}} {ute^{- ut} dt} } \right)} }}} \\ { = u\mathop {\lim }\limits_{{M \to \infty }} \sum\limits_{n = 0}^M {\frac{{\partial \left[ {e^{{ - u\left( {n + 1} \right)\left( {D + T} \right)}} - e^{{ - u\left[ {\left( {n + 1} \right)D + nT} \right]}} } \right]}}{{\partial u}}} } \\ { + u\mathop {\lim }\limits_{{M \to \infty }} \sum\limits_{n = 0}^M {\left[ {e^{{ - u\left[ {\left( {n + 1} \right)D + nT} \right]}} - e^{{ - u\left( {n + 1} \right)\left( {D + T} \right)}} } \right]} } \\ { + u\mathop {\lim }\limits_{{M \to \infty }} \sum\limits_{n = 0}^M {\left\{ {e^{{ - u\left[ {\left( {n + 1} \right)D + nT} \right]}} \frac{{\partial \left( {e^{- uT} - 1} \right)}}{{\partial u}} + \left( {e^{- uT} - 1} \right)\frac{{\partial e^{{ - u\left[ {\left( {n + 1} \right)D + nT} \right]}} }}{{\partial u}}} \right\}} } \\ { = u\mathop {\lim }\limits_{{M \to \infty }} \sum\limits_{n = 0}^M {\left[ {e^{{ - u\left[ {\left( {n + 1} \right)D + nT} \right]}} - e^{{ - u\left( {n + 1} \right)\left( {D + T} \right)}} } \right]} } \\ { = \frac{{e^{- uD} - e^{{ - u\left( {D + T} \right)}} }}{{1 - e^{{ - u\left( {D + T} \right)}} }} = \frac{{e^{uT} - 1}}{{e^{{u\left( {D + T} \right)}} - 1}}} \\ \end{array} . $$
(34)

We know that the probability that spectrum hole terminates in \( \left[ {\left( {n + 1} \right)D + nT,\left( {n + 1} \right)D + \left( {n + 1} \right)T} \right] \) is

$$ P\left\{ {\left( {n + 1} \right)D + nT \le t \le \left( {n + 1} \right)\left( {D + T} \right)} \right\}. $$
(35)

Thus, we can obtain that the collision probability is:

$$ \begin{array}{*{20}c} {P^c = P_{{\max }}^c \mathop {\lim }\limits_{{M \to \infty }} \sum\limits_{n = 1}^M {P\left\{ {\left( {n + 1} \right)D + nT \le t \le \left( {n + 1} \right)\left( {D + T} \right)} \right\}} } \hfill \\ { = v\mathop {\lim }\limits_{{M \to \infty }} \sum\limits_{n = 0}^M {\int_{{\left( {n + 1} \right)D + nT}}^{{\left( {n + 1} \right)D + \left( {n + 1} \right)T}} {ue^{- ut} dt} } } \hfill \\ { = v\mathop {\lim }\limits_{{M \to \infty }} \sum\limits_{n = 0}^M {\left( {e^{{ - u\left[ {\left( {n + 1} \right)D + nT} \right]}} - e^{{ - u\left[ {\left( {n + 1} \right)D + \left( {n + 1} \right)T} \right]}} } \right)} } \hfill \\ { = v\left[ {e^{- uD} - e^{{ - u\left( {D + T} \right)}} } \right]\mathop {\lim }\limits_{{M \to \infty }} \left[ {1 + e^{{ - u\left( {D + T} \right)}} + \cdots e^{{ - uM\left( {D + T} \right)}} } \right]} \hfill \\ { = v\frac{{e^{- uD} - e^{{ - u\left( {D + T} \right)}} }}{{1 - e^{{ - u\left( {D + T} \right)}} }}} \hfill \\ { = v\frac{{e^{uT} - 1}}{{e^{{u\left( {D + T} \right)}} - 1}}} \hfill \\ \end{array} . $$
(36)

Appendix 2: proof of Proposition 2

The probability density function of exponential distribution is given by Eq. 1.

  1. 1.

    \( \varsigma \ge P_{{\max }}^c \)

Now, the secondary user can start to transmit at the first time slot in the idle period and keep transmitting until collision occurs. That is to say, the optimal access time slot is the first time slot and available transmission duration is limitless, i.e.,

$$ x^{\text{opt}} = 0{\text{ and }}T^a = \infty . $$
(37)

Therefore, according to Eq. 37, we can obtain that

$$ \eta_{{{\text{SH}},\max }} = {{E\left( {0,\infty } \right)} \mathord{\left/ {\vphantom {{E\left( {0,\infty } \right)} {E\left( {0,\infty } \right)}}} \right. } {E\left( {0,\infty } \right)}} = 1. $$
  1. 2.

    \( \varsigma < P_{{\max }}^c \)

According to Eq. 14, we can obtain:

$$ \begin{array}{*{20}c} {P^C = P_{{\max }}^C \int_x^{x + T} {f\left( t \right)dt} \le \varsigma } \hfill \\ { \Rightarrow v\int_x^{x + T} {ue^{- ut} dt} \le \varsigma } \hfill \\ { \Rightarrow e^{- ux} - e^{{ - u\left( {x + T} \right)}} \le {\varsigma \mathord{\left/ {\vphantom {\varsigma v}} \right. } v}} \hfill \\ { \Rightarrow T \le {{ - \ln \left( {1 - {{\varsigma e^{ux} } \mathord{\left/ {\vphantom {{\varsigma e^{ux} } v}} \right. } v}} \right)} \mathord{\left/ {\vphantom {{ - \ln \left( {1 - {{\varsigma e^{ux} } \mathord{\left/ {\vphantom {{\varsigma e^{ux} } v}} \right. } v}} \right)} u}} \right. } u}} \hfill \\ \end{array} $$
(38)

According to Eq. 37, we can obtain:

$$ T^a = \max \left\{ T \right\} = {{ - 1} \mathord{\left/ {\vphantom {{ - 1} u}} \right. } u}\ln \left( {e^{- ux} - {\varsigma \mathord{\left/ {\vphantom {\varsigma v}} \right. } v}} \right) - x. $$
(39)

The transmission duration expectation of exponential distribution can be given as:

$$ \begin{array}{*{20}c} {E\left( {x,T} \right) = \int_x^{x + T} {\left( {t - x} \right)} f\left( t \right)dt + T\int_{x + T}^{\infty } {f\left( t \right)dt} } \hfill \\ { = \int_x^{x + T} {ute^{- ut} dt} - x\int_x^{x + T} {ue^{- ut} dt} + T\int_{x + T}^{\infty } {ue^{- ut} dt} } \hfill \\ { = \frac{1}{u}e^{- ux} - Te^{{ - u\left( {x + T} \right)}} - \frac{1}{u}e^{{ - u\left( {x + T} \right)}} + Te^{{ - u\left( {x + T} \right)}} } \hfill \\ { = \frac{1}{u}e^{- ux} - \frac{1}{u}e^{{ - u\left( {x + T} \right)}} } \hfill \\ { \le \frac{\varsigma }{uv}} \hfill \\ \end{array} . $$
(40)

It can easily obtained that

$$ E\left( {x,T} \right)_{{\max }} = \frac{\varsigma }{uv}\,{\text{when}}\;\,T = T^a \;{\text{and}}\;x \le {1 \mathord{\left/ {\vphantom {1 u}} \right. } u}\ln \left( {{v \mathord{\left/ {\vphantom {v \varsigma }} \right. } \varsigma }} \right). $$
(41)

It can be seen from Eq. 41 that E(x, T)max is constant when the channel-usage and collision tolerable level are certain.

$$ \begin{array}{*{20}c} {E\left( {0,\infty } \right) = \int_0^{\infty } {f\left( t \right)dt} } \hfill \\ { = \int_0^{\infty } {ue^{- ut} dt} = {1 \mathord{\left/ {\vphantom {1 u}} \right. } u}} \hfill \\ \end{array} $$
(42)

According to Eqs. 40 and 41, we can obtain that x opt is arbitrary in \( \left[ {0,{1 \mathord{\left/ {\vphantom {1 u}} \right. } u}\ln \left( {{v \mathord{\left/ {\vphantom {v \varsigma }} \right. } \varsigma }} \right)} \right] \) and the maximum spectrum holes utilization is:

$$ \eta_{{{\text{SH}},\max }} = {{E\left( {x,T} \right)_{{\max }} } \mathord{\left/ {\vphantom {{E\left( {x,T} \right)_{{\max }} } {E\left( {0,\infty } \right)}}} \right. } {E\left( {0,\infty } \right)}} = {\varsigma \mathord{\left/ {\vphantom {\varsigma v}} \right. } v}. $$

Appendix 3: proof of Proposition 3

The probability density function of Pareto distribution is:

$$ f\left( {\left. t \right|k,\sigma } \right) = k\sigma^k t^{- 1 - k} \;\left( {t \ge \sigma } \right). $$
(43)

We analyze Proposition 3 in the following two cases:

  1. 1.

    \( \varsigma \ge P_{{\max }}^c . \)

Now, the secondary user can start to transmit at the first time slot in the idle period and keep transmitting until collision occurs. That is to say, the optimal access time slot is the first time slot and available transmission duration is limitless, i.e.,

$$ \begin{array}{*{20}c} {x^{\text{opt}} = 0} \hfill \\ {T^a = \infty } \hfill \\ \end{array} . $$
(44)

Therefore, according to Eq. 43, we can obtain that

$$ \eta_{{{\text{SH}},\max }} = {{E\left( {0,\infty } \right)} \mathord{\left/ {\vphantom {{E\left( {0,\infty } \right)} {E\left( {0,\infty } \right)}}} \right. } {E\left( {0,\infty } \right)}} = 1. $$
  1. 2.

    \( \varsigma < P_{{\max }}^c \)

According to Eq. 14, we can obtain:

$$ \begin{array}{*{20}c} {P^C = P_{{\max }}^C \int_x^{x + T} {f\left( t \right)dt} \le \varsigma } \hfill \\ { \Rightarrow \sigma^k x^{- k} - \sigma^k \left( {x + T} \right)^{- k} \le {\varsigma \mathord{\left/ {\vphantom {\varsigma v}} \right. } v}} \hfill \\ { \Rightarrow T \le \left( {x^{- k} - \frac{\varsigma }{{v\sigma^k }}} \right)^{{{{ - 1} \mathord{\left/ {\vphantom {{ - 1} k}} \right. } k}}} - x} \hfill \\ \end{array} . $$
(45)

According to Eq. 44, we can obtain:

$$ T^a = \max \left\{ T \right\} = \left( {x^{- k} - \frac{\varsigma }{{v\sigma^k }}} \right)^{{{{ - 1} \mathord{\left/ {\vphantom {{ - 1} k}} \right. } k}}} - x, $$
(46)

and P c = ς when T = T a, i.e.,

$$ \int_x^{{x + T^a }} {f\left( t \right)dt} = {\varsigma \mathord{\left/ {\vphantom {\varsigma v}} \right. } v} $$
(47)

We compute partial derivative of both sides of Eq. 46 and can obtain:

$$ \left( {\frac{{dT^a }}{dx} + 1} \right)f\left( {x + T^a } \right) = f\left( x \right). $$
(48)

Then, we compute partial derivative of transmission duration expectation with respect to x as follows:

$$ \begin{array}{*{20}c} {\frac{{\partial E\left( {x,T^a } \right)}}{{\partial x}}} \hfill \\ { = \frac{\partial }{{\partial x}}\left[ {\int_x^{{x + T^a }} {tf\left( t \right)dt} - x\int_x^{{x + T^a }} {f\left( t \right)dt} + T^a \int_{{x + T^a }}^{\infty } {f\left( t \right)dt} } \right]} \hfill \\ { = \frac{\partial }{{\partial x}}\left[ {\int_x^{{x + T^a }} {tf\left( t \right)dt} - {{x\varsigma } \mathord{\left/ {\vphantom {{x\varsigma } v}} \right. } v} + T^a \int_{{x + T^a }}^{\infty } {f\left( t \right)dt} } \right]\,\;\left( {{\text{see}}\;{\text{Eq}}.\,47} \right)} \hfill \\ { = \left( {1 + \frac{{dT^a }}{dx}} \right)\left( {x + T^a } \right)f\left( {x + T^a } \right) - xf\left( x \right) + \frac{{dT^a }}{dx}\int_{x + T}^{\infty } {f\left( t \right)dt} } \hfill \\ { - T^a \left( {1 + \frac{{dT^a }}{dx}} \right)f\left( {x + T^a } \right) - {\varsigma \mathord{\left/ {\vphantom {\varsigma v}} \right. } v}} \hfill \\ { = x\left( {1 + \frac{{dT^a }}{dx}} \right)f\left( {x + T^a } \right) - xf\left( x \right) + \frac{{dT^a }}{dx}\int_{{x + T^a }}^{\infty } {f\left( t \right)dt} - {\varsigma \mathord{\left/ {\vphantom {\varsigma v}} \right. } v}} \hfill \\ { = \frac{{dT^a }}{dx}\int_{{x + T^a }}^{\infty } {f\left( t \right)dt} - {\varsigma \mathord{\left/ {\vphantom {\varsigma v}} \right. } v}\,\left( {{\text{see}}\;{\text{Eq}}{\text{. 48}}} \right)} \hfill \\ \end{array} $$
(49)

Note that the probability density function is variable in Eq. 49. Then, the partial derivative of transmission duration expectation of Pareto distribution with respect to x can be given as:

$$ \begin{array}{*{20}c} {\frac{{\partial E\left( {x,T^a } \right)}}{{\partial x}} = \frac{{dT^a }}{dx}\int_{{x + T^a }}^{\infty } {f\left( t \right)dt} - {\varsigma \mathord{\left/ {\vphantom {\varsigma v}} \right. } v}} \hfill \\ { = \left[ {\left( {\frac{x}{{x + T^a }}} \right)^{- 1 - k} - 1} \right]\sigma^k \left( {x + T^a } \right)^{- k} - {\varsigma \mathord{\left/ {\vphantom {\varsigma v}} \right. } v}} \hfill \\ { = \sigma^k \left[ {T^a x^{- 1 - k} + x^{- k} - \left( {x + T^a } \right)^{- k} } \right] - {\varsigma \mathord{\left/ {\vphantom {\varsigma v}} \right. } v}} \hfill \\ { = \sigma^k T^a x^{- 1 - k} } \hfill \\ { > 0\,\left( {k > 0} \right)} \hfill \\ \end{array} $$
(50)

Thus, E(x, T) monotonically increase with the increase of x when \( x < \sigma \left( {{v \mathord{\left/ {\vphantom {v \varsigma }} \right. } \varsigma }} \right)^{{{1 \mathord{\left/ {\vphantom {1 k}} \right. } k}}} \).

On the other hand, transmission duration is limitless, i.e., T = ∞ when \( x > \sigma \left( {{v \mathord{\left/ {\vphantom {v \varsigma }} \right. } \varsigma }} \right)^{{{1 \mathord{\left/ {\vphantom {1 k}} \right. } k}}} \), and we have

$$ \begin{array}{*{20}c} {E\left( {x,\infty } \right) = \int_x^{\infty } {\left( {t - x} \right)} f\left( t \right)dt} \hfill \\ { = \int_x^{\infty } {k\sigma t^{- k} dt} - x\int_x^{\infty } {k\sigma t^{- 1 - k} dt} } \hfill \\ { = - \sigma x^{1 - k} - \frac{{k\sigma }}{1 - k}x^{1 - k} } \hfill \\ { = \frac{\sigma }{k - 1}x^{1 - k} \left( {k > 1} \right)} \hfill \\ \end{array} . $$
(51)

Thus, E(x, ) monotonically decrease with the increase of x for \( x > \sigma \left( {{v \mathord{\left/ {\vphantom {v \varsigma }} \right. } \varsigma }} \right)^{{{1 \mathord{\left/ {\vphantom {1 k}} \right. } k}}} \).

Moreover,

$$ E\left( {x,T} \right) = \frac{{\sigma^{2 - k} }}{k - 1}\left( {\frac{v}{\varsigma }} \right)^{{{{\left( {1 - k} \right)} \mathord{\left/ {\vphantom {{\left( {1 - k} \right)} k}} \right. } k}}} \,{\text{for}}\,x = \sigma \left( {{v \mathord{\left/ {\vphantom {v \varsigma }} \right. } \varsigma }} \right)^{{{1 \mathord{\left/ {\vphantom {1 k}} \right. } k}}} $$
(52)

Therefore, we can obtain that maximum transmission duration expectation is:

$$ E\left( {x,T} \right)_{{\max }} = \frac{{\sigma^{2 - k} }}{k - 1}\left( {\frac{v}{\varsigma }} \right)^{{{{\left( {1 - k} \right)} \mathord{\left/ {\vphantom {{\left( {1 - k} \right)} k}} \right. } k}}}, $$
(53)
$$ \begin{array}{*{20}c} {E\left( {0,\infty } \right) = \int_0^{\infty } t f\left( t \right)dt} \hfill \\ { = \int_0^{\infty } {k\sigma^k t^{- k} dt} } \hfill \\ { = \frac{{k\sigma }}{k - 1}\,\left( {k > 1} \right)} \hfill \\ \end{array} . $$
(54)

According to Eqs. 53 and 54, we can obtain that the maximum spectrum holes utilization is:

$$ \eta_{{{\text{SH}},\max }} = \frac{{E\left( {x,T} \right)_{{\max }} }}{{E\left( {0,\infty } \right)}} = \frac{{\sigma^{1 - k} }}{k}\left( {\frac{v}{\varsigma }} \right)^{{{{\left( {1 - k} \right)} \mathord{\left/ {\vphantom {{\left( {1 - k} \right)} k}} \right. } k}}}, $$
(55)

where

$$ x = x^{\text{opt}} = \sigma \left( {{v \mathord{\left/ {\vphantom {v \varsigma }} \right. } \varsigma }} \right)^{{{1 \mathord{\left/ {\vphantom {1 k}} \right. } k}}} . $$

Appendix 4: proof of Proposition 4

The probability density function of generalized Pareto distribution is

$$ f\left( {t;k,\sigma } \right) = \frac{1}{\sigma }\left( {1 + k\frac{t}{\sigma }} \right)^{{{{ - 1 - 1} \mathord{\left/ {\vphantom {{ - 1 - 1} k}} \right. } k}}} . $$
(56)

We analyze Proposition 4 in the following two cases:

  1. 1.

    \( \zeta \ge P_{{\max }}^c \)

Now, the secondary user can start to transmit at the first time slot in the idle period and keep transmitting until collision occurs. That is to say, the optimal access time slot is the first time slot and available transmission duration is limitless, i.e.,

$$ x^{\text{opt}} = 0{\text{ and }}T^a = \infty . $$
(57)

Therefore, according to Eq. 57, we can obtain that

$$ \eta_{{{\text{SH}},\max }} = {{E\left( {0,\infty } \right)} \mathord{\left/ {\vphantom {{E\left( {0,\infty } \right)} {E\left( {0,\infty } \right)}}} \right. } {E\left( {0,\infty } \right)}} = 1. $$
  1. 2.

    \( \zeta < P_{{\max }}^c \)

According to Eq. 14, we can obtain:

$$ \begin{array}{*{20}c} {P^C = P_{{\max }}^C \int_x^{x + T} {f\left( t \right)dt} \le \varsigma } \hfill \\ { \Rightarrow \left( {1 + k\frac{x}{\sigma }} \right)^{{{{ - 1} \mathord{\left/ {\vphantom {{ - 1} k}} \right. } k}}} - \left( {1 + k\frac{x + T}{\sigma }} \right)^{{{{ - 1} \mathord{\left/ {\vphantom {{ - 1} k}} \right. } k}}} \le {\varsigma \mathord{\left/ {\vphantom {\varsigma v}} \right. } v}} \hfill \\ { \Rightarrow T \le \frac{\sigma }{k}\left[ {\left( {\left( {1 + k\frac{x}{\sigma }} \right)^{{{{ - 1} \mathord{\left/ {\vphantom {{ - 1} k}} \right. } k}}} {{ - \varsigma } \mathord{\left/ {\vphantom {{ - \varsigma } v}} \right. } v}} \right)^{- k} - 1} \right] - x} \hfill \\ \end{array} \;. $$
(58)

According to Eq. 58, we can obtain:

$$ T^a = \max \left\{ T \right\} = \frac{\sigma }{k}\left[ {\left( {\left( {1 + k\frac{x}{\sigma }} \right)^{{{{ - 1} \mathord{\left/ {\vphantom {{ - 1} k}} \right. } k}}} {{ - \varsigma } \mathord{\left/ {\vphantom {{ - \varsigma } v}} \right. } v}} \right)^{- k} - 1} \right] - x\;. $$
(59)

According to Eq. 49, the partial derivative of transmission duration expectation of generalized Pareto distribution with respect to x can be given as:

$$ \begin{array}{*{20}c} {\frac{{\partial E\left( {x,T^a } \right)}}{{\partial x}} = \frac{{dT^a }}{dx}\int_{{x + T^a }}^{\infty } {f\left( t \right)dt} - {\varsigma \mathord{\left/ {\vphantom {\varsigma v}} \right. } v}} \hfill \\ { = \left[ {\left( {\frac{{1 + k\frac{x}{\sigma }}}{{1 + k\frac{{x + T^a }}{\sigma }}}} \right)^{{{{ - 1 - 1} \mathord{\left/ {\vphantom {{ - 1 - 1} k}} \right. } k}}} - 1} \right]\left( {1 + k\frac{{x + T^a }}{\sigma }} \right)^{{{{ - 1} \mathord{\left/ {\vphantom {{ - 1} k}} \right. } k}}} - {\varsigma \mathord{\left/ {\vphantom {\varsigma v}} \right. } v}} \hfill \\ { = \left[ {\left( {1 + \frac{{{{kT^a } \mathord{\left/ {\vphantom {{kT^a } \sigma }} \right. } \sigma }}}{{1 + {{kx} \mathord{\left/ {\vphantom {{kx} \sigma }} \right. } \sigma }}}} \right)\left( {1 + k\frac{x}{\sigma }} \right)^{{{{ - 1} \mathord{\left/ {\vphantom {{ - 1} k}} \right. } k}}} - \left( {1 + k\frac{{x + T^a }}{\sigma }} \right)^{{{{ - 1} \mathord{\left/ {\vphantom {{ - 1} k}} \right. } k}}} } \right] - {\varsigma \mathord{\left/ {\vphantom {\varsigma v}} \right. } v}} \hfill \\ { = \left( {\frac{{kT^a }}{\sigma }} \right)\left( {1 + k\frac{x}{\sigma }} \right)^{{{{ - 1 - 1} \mathord{\left/ {\vphantom {{ - 1 - 1} k}} \right. } k}}} \ge 0\;\quad \left( {{\text{see}}\;{\text{Eq}}.\;58} \right)} \hfill \\ \end{array} $$
(60)

Therefore, we can obtain that E(x, T) is constant and is identical with exponential distribution if k = 0, and E(x, T) monotonically increase with the increase of x for

$$ 0 \le x < \frac{\sigma }{k}\left[ {\left( {{\varsigma \mathord{\left/ {\vphantom {\varsigma v}} \right. } v}} \right)^{- k} - 1} \right],\,{\text{if}}\,k > 0. $$

On the other hand, transmission duration is limitless, i.e., T = ∞ when \( x > \frac{\sigma }{k}\left[ {\left( {{\varsigma \mathord{\left/ {\vphantom {\varsigma v}} \right. } v}} \right)^{- k} - 1} \right] \), and we have

$$ \begin{array}{*{20}c} {E\left( {x,\infty } \right) = \int_x^{\infty } {\left( {t - x} \right)} f\left( t \right)dt} \hfill \\ { = \int_x^{\infty } {\frac{t}{\sigma }\left( {1 + \frac{kt}{\sigma }} \right)^{{{{ - 1 - 1} \mathord{\left/ {\vphantom {{ - 1 - 1} k}} \right. } k}}} dt} - x\int_x^{\infty } {\frac{1}{\sigma }\left( {1 + \frac{kt}{\sigma }} \right)^{{{{ - 1 - 1} \mathord{\left/ {\vphantom {{ - 1 - 1} k}} \right. } k}}} dt} } \hfill \\ { = x\left( {1 + \frac{kx}{\sigma }} \right)^{{{{ - 1} \mathord{\left/ {\vphantom {{ - 1} k}} \right. } k}}} - \frac{\sigma }{k - 1}\left( {1 + \frac{kx}{\sigma }} \right)^{{{{1 - 1} \mathord{\left/ {\vphantom {{1 - 1} k}} \right. } k}}} - x\left( {1 + \frac{kx}{\sigma }} \right)^{{{{ - 1} \mathord{\left/ {\vphantom {{ - 1} k}} \right. } k}}} } \hfill \\ { = \frac{\sigma }{1 - k}\left( {1 + \frac{kx}{\sigma }} \right)^{{{{1 - 1} \mathord{\left/ {\vphantom {{1 - 1} k}} \right. } k}}} } \hfill \\ \end{array} $$

Thus, E(x, ) monotonically decrease with the increase of x for

$$ x > \frac{\sigma }{k}\left[ {\left( {{\varsigma \mathord{\left/ {\vphantom {\varsigma v}} \right. } v}} \right)^{- k} - 1} \right]. $$

Moreover,

$$ E\left( {x,\infty } \right) = \frac{\sigma }{1 - k}\left( {{\varsigma \mathord{\left/ {\vphantom {\varsigma v}} \right. } v}} \right)^{1 - k} . $$

where

$$ x = \frac{\sigma }{k}\left[ {\left( {{\varsigma \mathord{\left/ {\vphantom {\varsigma v}} \right. } v}} \right)^{- k} - 1} \right]. $$

Therefore, we can obtain that the optimal access time slot is

$$ x^{\text{opt}} = \frac{\sigma }{k}\left[ {\left( {{\varsigma \mathord{\left/ {\vphantom {\varsigma v}} \right. } v}} \right)^{- k} - 1} \right] $$

and the maximum transmission duration expectation is:

$$ E\left( {x,T} \right)_{{\max }} = E\left( {x,\infty } \right) = \frac{\sigma }{1 - k}\left( {{\varsigma \mathord{\left/ {\vphantom {\varsigma v}} \right. } v}} \right)^{1 - k} . $$
(61)
$$ \begin{array}{*{20}c} {E\left( {0,\infty } \right) = \int_0^{\infty } t f(t)dt} \hfill \\ { = \int_0^{\infty } {\frac{t}{\sigma }\left( {1 + k\frac{t}{\sigma }} \right)^{{{{ - 1 - 1} \mathord{\left/ {\vphantom {{ - 1 - 1} k}} \right. } k}}} dt} } \hfill \\ { = \frac{\sigma }{1 - k}\,\left( {0 \le k < 1} \right)} \hfill \\ \end{array} $$
(62)

According to Eqs. 61 and 62, we can obtain that the maximum spectrum holes utilization is

$$ \eta_{{{\text{SH}},\max }} = {{E\left( {x,T} \right)_{{\max }} } \mathord{\left/ {\vphantom {{E\left( {x,T} \right)_{{\max }} } {E\left( {0,\infty } \right)}}} \right. } {E\left( {0,\infty } \right)}} = \left( {{\varsigma \mathord{\left/ {\vphantom {\varsigma v}} \right. } v}} \right)^{1 - k}, $$

where

$$ x = x^{\text{opt}} = \frac{\sigma }{k}\left[ {\left( {{\varsigma \mathord{\left/ {\vphantom {\varsigma v}} \right. } v}} \right)^{- k} - 1} \right]. $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, Q., Li, Y., Zhao, M. et al. An optimal OSA approach based on channel-usage estimate under collision probability constraint in cognitive radio systems. Ann. Telecommun. 64, 557–572 (2009). https://doi.org/10.1007/s12243-009-0092-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12243-009-0092-3

Keywords

Navigation