Skip to main content
Log in

RFI mitigation of GNSS signals for radio astronomy: problems and current techniques

  • Published:
annals of telecommunications - annales des télécommunications Aims and scope Submit manuscript

Abstract

Mitigation of man-made radio frequency interference (RFI) is a problem of increasing importance for radio astronomy. Indeed, numerous terrestrial and satellite services of all kinds create lots of electromagnetic signals in a large part of the radio spectrum that are likely to disturb radio astronomical observations. Moreover, the advent of large, highly sensitive radio telescopes such as SKA, LOFAR, etc., will permit the observation of extremely faint and distant radio sources which exhibit large amounts of red shift, hence overlapping with unprotected bands in the radio spectrum. Among various possible causes of RFI, GNSSs have specific characteristics which can be handled appropriately to design efficient mitigation techniques. GNSS signals are generally well documented and the ephemerides of satellites are well known. Therefore, various partially or fully informed methods can be used, which exploit knowledge of the characteristics of the modulations. Adaptive cancellation techniques can also be used that use auxiliary observations coming from additional antennas. Besides, knowing the spatial direction of the disturbing source, spatial filtering and related techniques that can be implemented in antenna arrays are likely to mitigate RFI with minimum knowledge of the GNSS. After recalling some radio astronomy basics, the paper presents a few examples of RFI caused by satellite systems on radio-astronomical observations. Then, we give a brief overview of state-of-the-art RFI mitigation techniques for radio astronomy and we present in some details the principles and results pertaining to some methods that seem particularly appropriate to mitigate RFI arising from GNSS signals. The importance of cooperation between GNSS designers and astronomers is finally pointed out.

Résumé

La lutte contre les interférences radioélectriques (RFI) d’origine humaine est un problème d’importance croissante pour la radioastronomie. En effet, de nombreux services de télécommunication terrestres et par satellites produisent des signaux électromagnétiques dans une grande partie du spectre radio, qui peuvent perturber les observations radioastronomiques. De plus, l’avènement de grands radiotélescopes très sensibles comme le SKA, LOFAR, etc. permettra l’observation de sources très faibles et éloignées présentant un taux important de « red shift » et par conséquent situées dans des parties non protégées du spectre radio. Parmi les diverses sources de RFI, les systèmes globaux de navigation par satellites (GNSS) possèdent des caractéristiques spécifiques qui peuvent être prises en compte de façon appropriée dans la conception de techniques efficaces de lutte contre les interférences. Les caractéristiques des signaux GNSS ainsi que les éphémérides des satellites sont en général bien connues et accessibles. Par conséquent, des méthodes partiellement ou totalement informées, exploitant les caractéristiques connues des modulations, peuvent être utilisées. Des techniques d’annulation adaptative utilisant des observations fournies par des antennes auxiliaires peuvent aussi être employées. D’un autre côté, connaissant la direction des sources perturbatrices, le filtrage spatial et des techniques assimilées pouvant être mises en œuvre dans des réseaux d’antennes, sont potentiellement capables de lutter contre les interférences avec une connaissance réduite des caractéristiques des GNSS. Après quelques rappels de base sur la radioastronomie et ses objets d’étude, l’article présente quelques exemples de perturbations d’observations radioastronomiques par des émissions satellites. Un bref état de l’art des techniques de lutte contre les interférences radioélectriques en radioastronomie est ensuite exposé ; les principes de certaines méthodes apparaissant bien adaptées à la lutte contre les interférences provenant de GNSS sont détaillés et des résultats de ces méthodes présentés. L’importance de la coopération entre concepteurs de GNSS et radioastronomes est finalement soulignée.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. CRAF Handbook for Radio Astronomy. Committee on Radio Astronomy Frequencies, European Science Foundation, 3rd edition, 2005

  2. Miller DF (1997) Basics of Radio Astronomy for the Goldstone-Apple Valley Radio Telescope, JPL D-13835

  3. Galt J (1991) Interference with Astronomical Observations of OH Maser from the Soviet Union's GLONASS Satellites. In: Crawford DL (ed) Proceedings of the International Astronomical Union Colloquium No. 112 on Light Pollution, Radio Interference and Space Debris, pp 213-221

  4. Combrink WL, West ME, Gaylard MJ (1994) Coexisting with GLONASS: observing the 1,612 MHz Hydroxyl line. Publications of the Astronomical Society of the Pacific 106:807–812

    Article  Google Scholar 

  5. Barnes DG et al (2001) The HI Parkes All Sky Survey: southern observations, calibration and robust imaging. MNRAS 322(3):486–498

    Article  MathSciNet  Google Scholar 

  6. GPS L3 Interference and Radio Astronomy, in CRAF Newsletter 2003/2, Oct. 2003. Link: http://www.craf.eu/gps.htm

  7. Shahriar C (2006) Mitigation of interference from IRIDIUM satellites by parametric estimation and subtraction, MS-Thesis (Electrical Engineering), Virginia Polytechnic Institute and State University

  8. Cohen RJ (2002) Iridium and radio astronomy in Europe, in Proc. IUCAF Summer School on Spectrum Management for Radio Astronomy, Green Bank, VA, USA

  9. Handbook of Frequency Allocations and Spectrum Protection for Scientific Uses. Committee on Radio Frequencies, National Research Council, 2007 (download: http://www.nap.edu/catalog/11719.html)

  10. Protection criteria used for radio astronomical measurements, Recommendation ITU-R RA-769-2, 2003

  11. Fridman PA, Baan WA (2001) RFI mitigation methods in radio astronomy. Astronomy & Astrophysics 378:327–344

    Article  Google Scholar 

  12. Proceedings of the IUCAF / NRC / DRAO Workshop on Mitigation of Radio Frequency Interference in Radio Astronomy, Penticton, BC, Canada, 2004 (available at: http://www.ece.vt.edu/swe/RFI2004/)

  13. Boonstra AJ (2005) radio interference mitigation in radio astronomy, Ph.D. Thesis, Tech. Univ. Delft, The Nertherlands

  14. Techniques for mitigation of radio interference in Radio Astronomy, ITU-R, Working Document 7D/142-E, 2007

  15. Dumez-Viou C (2007) Restauration de sources radioastronomiques en milieu radioélectrique hostile: Implantation de détecteurs temps réel sur des spectres dynamiques, Ph. D. thesis, Université d'Orléans, France

  16. Boonstra AJ et al (2000) The effect of blanking of TDMA interference on radio-astronomical observations: experimental results, in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, Istanbul, pp 3546-3549

  17. Weber R, Faye C (1998) Real Time Detector for Cyclostationary RFI in Radio Astronomy, in Proc. EUSIPCO Conference, Island of Rhodes, Greece, pp 1865-1868

  18. Briggs FH, Kocz J (2005) Overview of technical approaches to RFI mitigation. Radio Science 40:5

    Article  Google Scholar 

  19. Barnbaum C, Bradley C, Bradley RF (1998) A new approach to interference excision in radio astronomy: real-time adaptive cancellation. Astron J 115(5):2598–2614

    Article  Google Scholar 

  20. Ellingson SW, Bunton JD, Bell JF (2001) Removal of the GLONASS C/A signal from OH spectral line observations using a parametric modeling technique. The Astrophysical Journal Supplement Series 135:87–93

    Article  Google Scholar 

  21. Ellingson SW, Hampson GA (2002) A subspace-tracking approach to interference nulling for phased array-based radio telescopes. IEEE Trans Antennas Propag 50(1):25–30

    Article  Google Scholar 

  22. Jeffs BD, Warnick K, Li L (2003) Improved interference cancellation in synthesis array radio astronomy using auxiliary antennas. Proc IEEE Internat. Conf. Acoustics, Speech and Signal processing V:77–80

    Google Scholar 

  23. van der Tol S, van der Veen A-J (2005) Performance analysis of spatial filtering of RF interference in radio astronomy. IEEE Transactions on Signal Processing 53(3):896–910

    Article  MathSciNet  Google Scholar 

  24. Leshem A, van der Veen AJ, Boonstra AJ (2000) Multichannel interference mitigation techniques in radio astronomy. The Astrophysical Journal Supplement 131(1):355–373

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the reviewers for their careful review of the paper and for their remarks and suggestions which helped to improve it significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Gilloire.

Additional information

This work was first presented at the 3rd CNES-ESA Workshop on GNSS Signals and Signal Processing, Toulouse, 21–22 April 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilloire, A., Sizun, H. RFI mitigation of GNSS signals for radio astronomy: problems and current techniques. Ann. Telecommun. 64, 625 (2009). https://doi.org/10.1007/s12243-009-0112-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12243-009-0112-3

Keywords

Mots-clé

Navigation