Abstract
The first results achieved in the French ANR (National Research Agency) project BANET (Body Area NEtwork and Technologies) are presented (Part I). This project mainly deals with the antenna design in the context of Body Area Networks applications and channel characterization. General conclusions are drawn on the body impact on the antenna performance for on–on and in–on communications (Medical Implant Communication Systems). Narrow-band and ultra-wideband contexts are addressed both numerically and experimentally, and it is shown that design questions are significantly different for each case, leading to different constraints and guidelines. For narrow-band antennas, an alternative and original approach of desensitization using ferrite sheets is proposed and compared to classical techniques based on ground-plane screening. The characterization of numerical phantoms is also analyzed with narrow-band canonical antennas. For the specific on–on scenario, morphologies and electrical properties of the human tissues are also included in the topics of interest. For ultra-wideband antennas, focus is put on planar balanced designs, notably to reduce harmful “cable effects” occurring during the antenna characterization or the channel sounding. For both types of antennas, the main parameter under study is the distance to the body, which has a significant influence.



































Similar content being viewed by others
Notes
\( \eta = \left( {1 - {{\left| {{S_{{11}}}} \right|}^2}} \right){\eta_{\rm{rad}}}, \) where ηrad is the radiation efficiency.
References
Roblin Ch, LaheurteJ-M, D’Errico R, Gati A, Lautru D, Alvès T, Terchoune H, Bouttout F. “Antenna design and channel modelling in the BAN context—part II: channel,” submitted to annals of telecommunications, “special issue on body area networks applications and technologies,” Springer
IEEE P802.15-08-0780-09-0006 (K. Y. Yazdandoost and K. Sayrafian-Pour): channel model for body area network (BAN), IEEE 802.15 Working Group Document, April 2009
Salonen P, Kim J, Rahmat-Samii Y (2005) Dual-band E-shaped patch wearable textile antenna. IEEE Proc. AP-S, Washington
Ouyang Y, Karayianni E, Chappell WJ (2005) Effect of fabric patterns on electrotextile patch antennas. IEEE Proc. APS, Washington
Tanaka M, Jang J-H (2003) Wearable microstrip antenna. IEEE Antennas and Propag Int Symp 2:704–707
Klemm M, Locher I, Troster G (2004) A novel circularly polarized textile antenna for wearable applications. 34th European Microwave Conferance (EuMC), Amsterdam, Netherlands
Klemm M, Troester G (2006) Textile UWB antennas for wireless body area networks. IEEE Trans Antennas Propag 54(11):3192–3197
Zhu S, Langley R (2007) Dual-band wearable antennas over EBG substrate. Electron Lett 43(3):141–142
Sanz-Izquierdo B, Miller JA, Batchelor JC, Sobhy MI (2010) Dual-band wearable metallic button antennas and transmission in body area networks. IET Microw Antennas Propag 4(2):182–190
Almpanis G, Fumeaux C, Fröhlich J, Vahldieck R (2009) A truncated conical dielectric resonator antennafor body-area network applications. IEEE Antennas Wirel Propag Lett 8:279–282
Terence SP, Chen ZN (2005) Effects of human body on performance of wearable PIFAs and RF transmission. IEEE Proc. AP-S, Washington
Kamarudin MR, Nechayev YI, Hall PS (2005) Performance of antennas in the on-body environment. IEEE AP-S Int. Symp, Washington
Alomainy A, Hao Y, Parini CG, Hall PS (2005) Comparison between two different antennas for UWB on-body propagation measurements. IEEE Antennas Wirel Propag Lett 4(1):31–34
See TSP, Chen ZN (2009) Experimental characterization of UWB antennas for on-body communications. IEEE Trans Antennas Propag 57(4):866–874
Ackerman MJ (1995) Accessing the Visible Human Project. DLib Mag [Online]. Available at http://www.nlm.nih.gov/research/visible/visible_human.html
Conil E, Hadjem A, Lacroux F, Wong MF, Wiart J (2008) Variability analysis of SAR from 20 MHz to 2.4 GHz for different adult and child models using finite-difference time-domain. Phys Med Biol 53:1511–1525
Alves T, Augustine R, Quéffélec P, Grzeskowiak M, Poussot B, Laheurte J-M (2009) Polymeric ferrite-loaded antennas for on-body communications. Microwave Opt Technol Lett 51(11):2530–2533
Newman EH, Bohley P, et Walter CH (1975) Two Methods for the Measurement of Antenna Efficiency. IEEE Transactions on Antennas and Propagation, Vol. 23, No. 4
Salim T, Hall PS (2006) Efficiency measurement of antennas for on-body communications. MOTL 48(11):2256–2259
Gabriel S, Lau RW, Gabriel C (1996) The dielectric properties of biological tissues: II. Measurements in frequency range 10 Hz to 20 GHz. Phys Med Biol 41:2251–2269
Baker-Jarvis J, Vanzura EJ, Kissik WA (1990) Improved technique for determining complex permittivity with the transmission/reflection method. IEEE Trans Microwave Theory Tech 38(8):1096–1103
Chen W-T, Chuang H-R (1998) Numerical computation of the EM coupling between a circular loop antenna and a full-scale human-body model. IEEE Trans Microwave Theory Tech 46(10):1516–1520
Chen W-T, Chuang H-R (1998) Numerical computation of human interaction with arbitrarily oriented superquadratic loop antennas in personal communications. IEEE Trans Antennas Propag 46(6):821–828
Chen ZN, Liu GC, See TSP (2009) Transmission of RF signals between MICS loop antennas in free space and implanted in the human head. IEEE Trans Antennas Propag 57(6):1850–1854
Hall PS, Hao Y (2006) Antennas and propagation for body-centric wireless communications. Artech House, Boston
Alomainy A, Hao Y (2009) Modeling and characterization of biotelemetric radio channel from ingested implants considering organ contents. IEEE Trans Antennas Propag 57:999–1005
Ghannoum H, Bories S, D’Errico R (2006) Small-size UWB planar antenna and its behaviour in WBAN/WPAN applications. IEE Seminar on Ultra Wideband Systems, Technologies and Applications, London, Apr. 20
Ghannoum H: Etude conjointe antenne/canal pour les communications Ultra Large Bande en présence du corps humain, Doctorat ENST et ENSTA, Dec. 2006 pastel.paristech.org/2083/
Bories S, Ghannoum H, Roblin C (2005) Robust planar stripline monopole for UWB terminal applications. Proc. 2005 IEEE International Conference on Ultra-Wideband
D'Errico R, Ghannoum H, Roblin Ch, Sibille A (2006) “Small Semi Directional Antenna for UWB Terminal Applications,” First European Conference on Antennas and Propagation, EuCAP’06, Nice, 6–10 Nov
Roblin Ch, Sibille A, Bories S (2005) Semi-directional small antenna design for UWB Multimedia Terminals. ANTEM 2005 Proceedings, St. Malo, pp.142–143
Roblin Ch, Bories S, Sibille A (2003) Characterization tools of antennas in the time domain. IWUWBS, Oulu
Demeestere F, Delaveaud C, Keignart J, Bories S (2006) Compact dipole for low frequency band UWB applications. First European Conference on Antennas and Propagation, 2006. EuCAP 2006, Nice France, 6–10 Nov 2006
Demeestere F, Delaveaud C, Keignart J (2006) A compact UWB antenna with a wide band circuit model and a time domain characterization. IEEE International Conference on Ultra-Wideband, Waltham, MA, 24–27 Sept 2006
D’Errico R, Ouvry L (2009) Time-variant BAN channel characterization, PIMRC 2009, Tokyo, Japan, 13–16 Sept
Soras C, Karaboikis M, Tsachtsiris G, Makios V (2002) Analysis and design of an inverted-F antenna printed on a PCMCIA card for the 2.4 GHz ISM Band. IEEE Antennas and Propagation Magazine 44, No. 1
Huynh M-C, Stutzman W (2003) Ground plane effects on planar inverted-F antenna (PIFA) performance. IEE Proc Microw Antennas Propag 150, No. 4
Pasquet F, Jecko B (2001) New developments of the wire-patch antenna for ceramic technology and multifunction applications. IEEE Antennas and Propagation Society International Symposium
I.G. Zubal, C.R. Harrell, E.O. Smith, A.L. Smith (1995) Two dedicated voxel-based anthropomorphic (torso and head) phantoms. Proceedings of the International Workshop: Voxel Phantom Development, NRPB Chilton, UK, pp 105–111
Dimbylow PJ (1996) The development of realistic voxel phantoms for electromagnetic field dosimetry. Proc Int. Workshop on Voxel Phantom Development (National Radiological Protection Board Report), pp. 1–7
Nagaoka T, Watanabe S, Sakurai K, Kunieda E, Watanabe S, Taki M, Yamanaka Y (2004) “Development of realistic high-resolution whole-body voxel models of Japanese adult males and females of average height and weight and application of models to radio-frequency electromagnetic field dosimetry”. Phys Med Biol 49:1–15
Acknowledgments
Authors would like to thank Daniel Toledano and Lara Traver for their contribution to measurement campaigns at ENSTA-ParisTech, Serge Bories for his initial contribution and Laurent Ouvry—from CEA-Leti—for his wise scientific advice, and Amir Yousuf, Franscesco Guidi, Enrique De Mur, and Nizar Malkiya for their help at ENSTA-ParisTech.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Roblin, C., Laheurte, JM., D’Errico, R. et al. Antenna design and channel modeling in the BAN context—part I: antennas. Ann. Telecommun. 66, 139–155 (2011). https://doi.org/10.1007/s12243-010-0237-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12243-010-0237-4