Skip to main content
Log in

A robust invariant bipolar representation for R 3 surfaces: applied to the face description

  • Published:
annals of telecommunications - annales des télécommunications Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this paper, we intend to introduce a novel invariant curved surface representation under the 3D motion group. It is constructed from the superposition of the two geodesic potentials generated from a given couple of surface points. By sampling this continuous representation, invariant points are extracted from a large neighborhood around these reference points. Different numerical methods are implemented in order to find an efficient approximation in the mean of the shape distance. The inference of small distortions of points positions applied to the reference points is analyzed. We apply the proposed representation to real 3D images. The experimentations are performed on the 3D facial database Bosphorus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Dutagaci H, Sankur B, Yemez Y (2005) Transform-based methods for indexing and retrieval of 3D objects. In: Fifth international conference 3D digital imaging and modeling, pp 188–195

  2. Burdin V, Ghorbel F, Tocnaye JDBDL, Roux C (1992) A three-dimensional primitive extraction of long bones obtained from bi-dimensional Fourier descriptors. Pattern Recogn Lett 13(3):213–217

    Article  Google Scholar 

  3. Daras P, Zarpalas D, Tzovaras D, Strintzis MG (2004) Shape matching using the 3D Radon transform. In: Second international symposium 3D data processing, visualization, and transmission, pp 953–960

  4. Zarpalas D, Daras P, Axenopoulos A, Tzovaras D, Strintzis MG (2007) 3D model search and retrieval using the spherical trace transform. EURASIP J Adv Signal Process 2007(1):14

    Article  Google Scholar 

  5. Ricard J, Coeurjolly D, Baskurt A (2005) Generalizations of angular radial transform for 2D and 3D shape retrieval. Pattern Recogn Lett 26(14):2174–2186

    Article  Google Scholar 

  6. Vranic DV (2003) An improvement of rotation invariant 3D shape descriptor based on functions on concentric spheres. In: IEEE international conference on image processing, pp 757–760

  7. Kazhdan M, Funkhouser T, Rusinkiewicz S (2003) Rotation invariant spherical harmonic representation of 3D shape descriptors. In: Eurographics/ACM SIGGRAPH symposium on geometry processing, pp 156–164

  8. Bel Hadj Khelifa W, Ben Abdallah A, Ghorbel F (2008) Three dimensional modeling of the left ventricle of the heart using spherical harmonic analysis. In: 5th IEEE international symposium on biomedical imaging: from nano to macro (ISBI 2008), Paris, France

  9. Brechbuhler C, Gerig G, Kubler O (1996) Parametrization of closed surfaces for 3-D shape description. Comput Vis Image Underst 16:154–170

    Google Scholar 

  10. Papadakis SPP, Pratikakis I, Theoharis T (2007) Efficient 3D shape matching and retrieval using a concrete radialized spherical projection representation. Pattern Recogn 40(9):2437–2452

    Article  MATH  Google Scholar 

  11. Laga H, Takahashi H, Nakajima M (2006) Spherical wavelet descriptors for content-based 3D model retrieval. In: IEEE international conference on shape modeling and applications, pp 15–25

  12. Chen DY, Tian XP, Shen YT, Ouhyoung M (2003) On visual similarity based 3D model retrieval. Computer Graphics Forum 22(3):223–232

    Article  Google Scholar 

  13. Vranic DV (2004) 3D model retrieval. PhD dissertation, University of Leipzig

  14. Hilaga M, Shinagawa Y, Kohmura T, Kunii TL (2001) Topology matching for fully automatic similarity estimation of 3D shapes. In: ACM SIGGRAPH, pp 203–212

  15. Tung T, Schmitt F (2005) The augmented multiresolution Reeb graph approach for content-based retrieval of 3D shapes. Int J Shape Model 11(1):91–120

    Article  Google Scholar 

  16. Sundar H, Silver D, Gagvani N, Dickinson S (2003) Based shape matching and retrieval. In: Shape modeling international 2003, p 130

  17. Faugeras OD, Hebert M (1986) The representation, recognition and positioning of 3D shapes from range data. In: Rosenfeld A Techniques for 3D machine perception. North-Holland, Amsterdam

    Google Scholar 

  18. Hallinan PW, Gordon GG, Yuille AL, Giblin P, Munford D (1999) Two and three dimensional patterns of face. A.K. Peters, Wellesley

    MATH  Google Scholar 

  19. Liu Y, Zha H, Qin H (2006) The generalized shape distributions for shape matching and analysis. In: IEEE international conference of shape modeling and applications, p 16

  20. Horn BKP (1984) Extended Gaussian images. Proc IEEE 72(12):1671–1686

    Article  Google Scholar 

  21. Kang SB, Ikeuchi K (1993) The complex EGI: a new representation for 3D pose determination. IEEE Trans Pattern Anal Mach Intell 15(7):707–721

    Article  Google Scholar 

  22. Sadjadi FA, Hall EL (1980) Three-dimensional moment invariants. IEEE Trans Pattern Anal Mach Intell 2(2):127–136

    Article  MATH  Google Scholar 

  23. Zaharia Z, Preteux F (2002) Shape-based retrieval of 3D mesh models. In: IEEE international conference on multimedia and expo (ICME 2002), Lausanne, Switzerland

  24. Bannour MT, Ghorbel F (2000) Isotropie de la représentation des surfaces; Application à la description et la visualisation d’objets 3D. In: RFIA 2000, pp 275–282

  25. Scovanner P, Ali S, Shah M (2007) A 3-dimensional sift descriptor and its application to action recognition. In: 15th international conference on multimedia

  26. Spivak M (1999) A comprehensive introduction to differential geometry. Publish or Perish, Houston

    MATH  Google Scholar 

  27. Samir C, Srivastava A, Daoudi M (2006) Three dimensional face recognition using shapes of facial curves. IEEE Trans Pattern Anal Mach Intell 28(11):1858–1863

    Article  Google Scholar 

  28. Srivastava A, Samir C, Joshi SH, Daoudi M (2008) Elastic shape models for face anlysis using curvilinear coordinates. J Math Imag Vis 33(2):253–265

    Article  MathSciNet  Google Scholar 

  29. Gadacha W, Ghorbel F (2012) A new 3D surface registration approach depending on a suited resolution: application to 3D faces. In: IEEE Mediterranean and electrotechnical conference (MELECON), Hammamet, Tunisia

  30. Besl PJ, Mckay ND (1992) A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell 14(2):239–256

    Article  Google Scholar 

  31. Cohen LD, Kimmel R (1997) Global minimum for active contour model: a minimal path approach. Int J Comput Vis 24(1):57–78

    Article  Google Scholar 

  32. Demengel G, Pouget JP (1998) Mathématiques des courbes et des surfaces: modeles de Bezier, des B-splines et des nurbs. Edition Ellipses

  33. Struik DJ (1988) Lectures on classical differential geometry. Dover, New York

    MATH  Google Scholar 

  34. Ghorbel F (1998) A unitary formulation for invariant image description: application to image coding. Ann Telecommun (Special issue) 53(5–6):242–260

    Google Scholar 

  35. Ghorbel F (2012) Invariants for shapes and movement. Eleven cases from 1D to 4D and from Euclidean to projectives (French version). Arts-pi Edition, Tunisia

  36. Phillips PJ, Flynn PJ, Scruggs T, Bowyer KW, Chang J, Hoffman K, Marques J, Min J, Worek W (2007) Overview of the face recognition grand challenge. In: IEEE conference on computer vision and pattern recognition workshops, pp 947–954

  37. Savran A, Alyz A, Dibeklioglu H, Eliktutan O, Gkberk B, Sankur B, Akarun L (2008) Bosphorus database for 3D face analysis. In: The first COST 2101 workshop on biometrics and identity management (BIOID2008)

  38. Campadelli P, Lanzarotti R, Lipori G (2007) Automatic facial feature extraction for face recognition. In: Delac K, Grgic M (eds) Face recognition. I-Tech Education and Publishing, Vienna. ISBN: 978-3-902613-03-5

    Google Scholar 

  39. Szeptycki P, Ardabilian M, Chen L (2009) A coarse-to-fine curvature analysis-based rotation invariant 3D face landmarking. In: IEEE 3rd international conference on biometrics: theory, applications, and systems, 2009. BTAS ’09

  40. Dijkstra EW (1959) A note on two problems in connection with graphs. Numer Math 1:269–271

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majdi Jribi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghorbel, F., Jribi, M. A robust invariant bipolar representation for R 3 surfaces: applied to the face description. Ann. Telecommun. 68, 219–230 (2013). https://doi.org/10.1007/s12243-012-0335-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12243-012-0335-6

Keywords