Skip to main content
Log in

Optimal space-time coding under iterative processing

  • Published:
annals of telecommunications - annales des télécommunications Aims and scope Submit manuscript

Abstract

In this paper, we deal with the design of a full-rate space-time block coding (STBC) scheme optimized for linear iterative decoding over fast fading multiple-input multiple-output (MIMO) channel. A general and simple coding scheme called diagonal threaded space-time (DTST) code is presented for an arbitrary number of transmit and receive antennas. Theoretical analysis shows that DTST code associated with linear iterative decoding tends towards full diversity performance while providing maximum MIMO multiplexing gain. Simulation results confirm the ability of DTST to outperform the state-of-the-art STBC and conventional spatial data multiplexing schemes under iterative processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gesbert D, Shafi M, Shiu D, Smith P (2003) From theory to practice: an overview of space-time coded mimo wireless systems. IEEE J Sel Areas Commun 21(3):281–302

    Article  Google Scholar 

  2. Paulraj A, Gore AD, Nabar RU, Boelcskei H (2004) An overview of MIMO communications: a key to gigabit wireless. Proc IEEE 92(2):198–218

    Article  Google Scholar 

  3. Telatar E (1995) Capacity of multiantenna Gaussian channel Bell Labs, Technical Memo

  4. Tarokh V, Jafarkhani H, Calderbank A (1999) Space-time block codes from orthogonal designs. IEEE Trans Inf Theory 45(5):1456–1467

    Article  MATH  MathSciNet  Google Scholar 

  5. Tonello AM (2000) Space-time bit-interleaved coded modulation over frequency selective fading channels with iterative decoding. In: Global Telecommunications Conference, 2000. GLOBECOM ’00. IEEE, vol 3, pp 1616–1620. doi:10.1109/GLOCOM.2000.891911

  6. Damen M, Beaulieu N (2003) On diagonal algebraic space-time block codes. IEEE Trans Commun 51(6):911–919

    Article  Google Scholar 

  7. Gamal HE, Damen M (2003) Universal space-time coding. IEEE Trans Inf Theory 49(5):1097–1119. doi:10.1109/TIT.2003.810644

    Article  MATH  Google Scholar 

  8. Belfiore JC, Rekaya G, Viterbo E (2005) The golden code: a 2 × 2 full-rate space-time code with nonvanishing determinants. IEEE Trans Inf Theory 51(4):1432–1436

    Article  MathSciNet  Google Scholar 

  9. Oggier F, Rekaya G, Belfiore JC, Viterbo E (2006) Perfect space-time block codes. IEEE Trans Inf Theory 52(9):3885–3902

    Article  MATH  MathSciNet  Google Scholar 

  10. Biglieri E, Hong Y, Viterbo E (2009) On fast-decodable spacetime block codes. IEEE Trans Inf Theory 55(2):524–530

    Article  MathSciNet  Google Scholar 

  11. Basar E, Aygolu U (2009) High-rate full-diversity space-time block codes for three and four transmit antennas. IET Communications 3(8):1371–1378

    Article  Google Scholar 

  12. Hassibi B, Hochwald BM (2002) High-rate codes that are linear in space and time. IEEE Trans Inf Theory 48(7):1804–1824

    Article  MATH  MathSciNet  Google Scholar 

  13. Reynolds D, Wang X (2001) Low-complexity turbo-equalization for diversity channels. Signal Process 81(5):889–995

    Article  Google Scholar 

  14. Tuechler M, Singer AC, Koetter R (2002) Minimum mean squared error equalization using a priori information. IEEE Trans Signal Process 50(3):673–683

    Article  Google Scholar 

  15. Laot C, Le Bidan R, Leroux D (2005) Low-complexity MMSE turbo equalization: a possible solution for EDGE. IEEE Trans Wirel Commun 4(3):965–974

    Article  Google Scholar 

  16. Le Josse N, Laot C, Amis K (2006) Performance validation for MMSE turbo equalization in ST-BICM systems. In: IEEE 64th vehicular technology conference. VTC-2006, p 1–5

  17. Bouvet PJ, Helard M, Le Nir V (2006) Simple iterative receivers for LP-OFDM MIMO systems. Ann Telecommun 61(5):578–601

    Article  Google Scholar 

  18. Boher L, Rabineau R, Helard M (2008) FPGA implementation of an iterative receiver for MIMO-OFDM systems. IEEE J Sel Areas Commun 26(6):857–866

    Article  Google Scholar 

  19. Proakis JG (1995) Digital communications. McGraw-Hill, New York

    Google Scholar 

  20. Golub G, Van Loan C (1996) Matrix computations, 3rd edn. Johns Hopkins Univ Press, Baltimore

    MATH  Google Scholar 

  21. Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1992) Numerical recipes in C: the art of scientific computing, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  22. Visoz R, Berthet AO, Lalam M (2010) Semi-analytical performance prediction methods for iterative MMSE-IC multiuser MIMO joint decoding. IEEE Trans Commun 58(9):2576-2589

    Article  Google Scholar 

Download references

Acknowledgment

Part of this work has been carried out with the support of Orange Labs, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Jean Bouvet.

Appendix

Appendix

Let us first derive the general expression of received sample from antenna \(j \in [1,N_{r}]\) at sampling time \(p \in [1,T]\). From (3), we can write:

$$ [\mathbf{Y}]_{j,p} = \sum\limits_{i=1}^{N_{t}} [\mathbf{H}]_{j,i} [\mathbf{X}]_{i,p} + [\mathbf{W}]_{j,p}. $$
(53)

Let us now consider DTST encoding as presented in Section 4. By using (32) and setting \(i=\lfloor l+p-2 \rfloor _{N_{t}}+1\), Eq. (53) may be rewritten for the DTST case as:

$$ [\mathbf{Y}]_{j,p} = \sum\limits_{l=1}^{L} \Big([\mathbf{H}]_{j,\lfloor l+p-2 \rfloor_{N_{t}}+1} \cdot [\mathbf{u}_{l}]_{p} \Big) + [\mathbf{W}]_{j,p} $$
(54)

where:

$$ [\mathbf{u}_{l}]_{p} = \frac{1}{\sqrt{L}} {\boldsymbol{\Theta}} \mathbf{x}_{l} $$
(55)
$$ =\frac{1}{\sqrt{L}}\sum\limits_{n=1}^{N_{t}} [\mathbf{\Theta}]_{p,n} [\mathbf{x}_{l}]_{n} $$
(56)
$$ =\frac{1}{\sqrt{L}}\sum\limits_{n=1}^{N_{t}} [\mathbf{\Theta}]_{p,n} \cdot x_{(l-1)N_{t}+n}$$
(57)

We can see that \( [\mathbf {u}_{l}]_{p}\) is only function of \([ x_{(l-1)N_{t}+1},..,x_{(l-1)N_{t}+N_{t}}]\). In other words \([\mathbf {u}_{l}]_{p}\) is not linked to \([\mathbf {u}_{l'}]_{p}\) for \(l \neq l'\). As a result, (54) may be factorized as:

$$\begin{array}{rll} [\mathbf{Y}]_{j,p} &=& \frac{1}{\sqrt{L}} \sum\limits_{l=1}^{L} \sum\limits_{n=1}^{N_{t}} \Big([\mathbf{H}]_{j,\lfloor l+p-2 \rfloor_{N_{t}}+1}\\ &&\qquad\qquad\qquad \cdot [\mathbf{\Theta}]_{p,n} \cdot x_{(l-1)N_{t}+n}\Big)+ [\mathbf{W}]_{j,p}.\\ \end{array} $$
(58)

Since DTST codes are complex linear STBC, Eq. (5) can be invoked. This yields that Eq. (54) may be rewritten in the following form:

$$ [\mathbf{Y}]_{j,p} = \sum\limits_{k=1}^{Q} \big[\underline{\mathbf{H}}\big]_{(p-1)N_{r}+j,k} \cdot x_{k} + [\mathbf{W}]_{j,p}. $$
(59)

Let us write \(k=(l-1)N_{t}+n\) for \(l\in [1,L]\) and \(n \in [1,N_{t}]\). By identifying (58) and (59), we obtain:

$$ \big[\underline{\mathbf{H}}\big]_{(p-1)N_{r}+j,(l-1)N_{t}+n} = \frac{1}{\sqrt{L}} [\mathbf{\Theta}]_{p,n} [\mathbf{H}]_{j,\lfloor l+p-2 \rfloor_{N_{t}}+1}. $$
(60)

The Euclidean norm of \(\underline {\mathbf {h}}_{k}\) for \(l\in [1,L]\) and \(n\in [1,N_{t}]\) becomes:

$$ \|\underline{\mathbf{h}}_{k} \|^{2} = \sum\limits_{p=1}^{N_{t}} \sum\limits_{j=1}^{N_{r}}\Big|\big[\underline{\mathbf{H}}\big]_{(p-1)N_{r}+j,(l-1)N_{t}+n}\Big|^{2}$$
(61)
$$=\frac{1}{L}\sum\limits_{p=1}^{N_{t}} \sum\limits_{j=1}^{N_{r}} \Big|[\mathbf{\Theta}]_{p,n}\Big|^{2} \cdot \Big| [\mathbf{H}]_{j,\lfloor l+p-2 \rfloor_{N_{t}}+1}\Big|^{2}.$$
(62)

By construction of the precoding matrix \(\mathbf {\Theta }\), we have

$$ \Big|[\mathbf{\Theta}]_{p,n}\Big|^{2} = \frac{1}{N_{t}} \quad \forall p,n \in [1,N_{t}]. $$
(63)

On the other side, we can notice:

$$ \sum\limits_{p=1}^{N_{t}} \sum\limits_{j=1}^{N_{r}} \Big| [\mathbf{H}]_{j,\lfloor l+p-2 \rfloor_{N_{t}}+1}\Big|^{2} = \sum\limits_{i=1}^{N_{t}} \sum\limits_{j=1}^{N_{r}} \Big| [\mathbf{H}]_{j,i}\Big|^{2}. $$
(64)

Finally, it yields:

$$\|\underline{\mathbf{h}}_{k} \|^{2} = \frac{1}{LN_{t}}\sum\limits_{i=1}^{N_{t}} \sum\limits_{j=1}^{N_{r}} \Big| [\mathbf{H}]_{j,i}\Big|^{2}$$
(65)
$$= \frac{1}{LN_{t}}\sum\limits_{i=1}^{N_{t}} \sum\limits_{j=1}^{N_{r}} |h_{ij}|^{2}$$
(66)
$$=\frac{1}{L N_{t}}\operatorname{tr}\left[\mathbf{H}^{H} \mathbf{H}\right] $$
(67)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouvet, PJ., Hélard, M. Optimal space-time coding under iterative processing. Ann. Telecommun. 69, 229–238 (2014). https://doi.org/10.1007/s12243-013-0353-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12243-013-0353-z

Keywords

Navigation