Abstract
These works were dedicated to the electrical modeling of biological cell subjected to pulsed electromagnetic fields. From the variability of living parameters encountered, an accurate modeling of the electrical and stochastic parameters is necessary. In this paper, we propose simple stochastic approaches based upon a Monte Carlo-like “philosophy” to integrate uncertainties. The use of robust stochastic methods in the field of bio-electromagnetic compatibility allows an improvement of both the efficiency and precision of the technique. The potential aimed applications relying in the study on the sensitivity of biological and electrical parameters in the start of the electroporation phenomenon. We will present the electrical model and the theoretical foundations of these techniques—they will be illustrated on numerical examples.
















Similar content being viewed by others
References
Burais N, Buret F, Faure N, Frenea-Robin M, Nicolas L, Ogbi A, Perrussel R, Scoretti R, Voyer D (2008) Modélisation de l’interaction entre champ électrique et cellules biologiques. In: Proc. NUMELEC2008. Liège, Belgique
El Habachi A (2011) Propagation de la variabilité de la morphologie humaine sur le Débit d’Absorption Spécifique en dosimétrie numérique. PhD Thesis Supélec, Paris, France
Silve A, Leray I, Mir L (2011) Demonstration of cell membrane permeabilization to medium-sized molecules caused by a single 10 ns electric pulse. Bioelectrochemistry, doi:10.1016/j.bioelechem.2011.10.002
Sundararajan R (2009) Nanosecond electroporation: another look. Mol Biotechnol 41(1):69–82
Shoenbach KH, Katsuki S, Stark RH, Buescher ES, Beebe SJ (2002) Bioelectrics-new applications for pulsed power technology. IEEE Trans Plasma Sci 30(1):293–300
Ellapan P, Sundararajan R (2005) A simulation study of the electrical model of a biological cell. J Electrost 63:297–307
Shrive L, Grasmick A, Moussière S, Sarrade S (2006) Pulsed electric field treatment of Saccharomyces cerevisiae suspensions: a mechanistic approach coupling energy transfer, mass transfer and hydrodynamics. Biochem Eng J 27(3):212–224
Press WH, Teukolsky SA (1992) Numerical recipes, 2nd edn. Cambridge University Press, Cambridge
Mishra N, Gupta N (2009) Quasi Monte Carlo integration technique for method of moments solution of EFIE in radiation problems. ACES J 24(3):306–311
de Menezes L, Thomas D, Christopoulos C (2009) Accounting for uncertainty in EMC studies. In: Proc. Int. Symp. on EMC. Kyoto, Japan
de Menezes L, Thomas D, Christopoulos C, Ajayi A, Sewell P (2008) The use of unscented transforms for statistical analysis in EM. In: Proc. EMC Europe 2008. Hamburg, Germany
de Menezes L, Ajayi A, Christopoulos C, Sewell P, Borges GA (2008) Efficient computation of stochastic electromagnetic problems using unscented transforms. IET Sci Meas Technol 2(2):88–95
Chauvière C, Hestaven JS, Wilcox LC (2007) Efficient computation of RCS from scatterers of uncertain shapes. IEEE Trans Antennas Propag 55(5):1437–1448
Bonnet P, Diouf F, Chauvière C, Lalléchère S, Fogli M, Paladian F (2009) Numerical simulation of a reverberation chamber with a stochastic collocation method. CR Acad Sci, Phys 10:54–64
Bonnet P, Chauvière C, Lalléchère S, Paladian F, Pecqueux B (2010) Recherche de configurations critiques pour un problème de C.E.M. stochastique. In: Proc. 15th Int. Symp. on EMC. Limoges, France
Paladian F, Bonnet P, Lalléchère S (2011) Modeling complex systems for EMC applications by considering uncertainties. Proc. XXXth URSI GA 2011. Istanbul, Turkey
Diouf F, Canavero F (2009) Crosstalk statistics via collocation method. In: Proc. IEEE Int. Symp. on Electromagnetic Compatibility. Austin, TX, USA
Rannou V, Brouaye F, Hélier M, Tabbara W (2002) Kriging the quantile: application to a simple transmission line model. Inst. of Ph. Publish., Inverse Problems 18, pp 37–48
Jouvie F, Lecointre D, Briend P, Jacquin F, Nicolas E (2011) Computation of the field radiated by a FM transmitter by means of ordinary kriging. Ann Telecommun 66:429–443
Voyer D, Nicolas L, Perrussel R (2009) Comparison of methods for modeling uncertainties in a 2D hyperthermia problem. PIER B 11:189–204
Bagci H, Yucel AC, Hesthaven JS (2009) A fast stroud-based collocation method for statistically characterizing EMI/EMC phenomena on complex platforms. IEEE Trans EMC 51(2):301–311
Sumant PS, Wu H, Cangellaris AC, Aluru NR (2010) A sparse grid based collocation method for model order reduction of finite element approximations of passive electromagnetic devices under uncertainty. In: Proc. 2010 IEEE MTT-S International. Anaheim, CA, USA, pp 1652–1655
Tarhini I, Guiffaut C, Reineix A, Karam S, Pecqueux B, Joly JC (2008) Etude paramétrique de la susceptibilité des cartes électroniques par les plans d’expériences numériques. In: Proc. Int. Symp. On EMC. Paris, France
Matriche Y, Feliachi M, Zaoui A, Abdellah M (2012) Modèle de réponse du RADAR pénétration de sol basé sur la méthode de plan d’expérience en vue de la localisation et la caractérisation des objets explosifs enfouis. In: Proc. NUMELEC 2012. Marseille, France
Aiouaz O, Lautru D, Wong MF, Wiart J, Fouad-Hanna V (2010) Méthode de collocation stochastique multidimensionnelle par calcul FDTD pour evaluer la variabilite du DAS. In: Proc. CEM2010. Limoges
Aiouaz O, Lautru D, Wong MF, Conil E, Gati A, Wiart J, Fouad-Hanna V (2011) Uncertainty analysis of the specific absorption rate induced in a phantom using a stochastic spectral collocation method. Ann Telecommun 66:409–418
Drissaoui A, Musy F, Perrussel R, Voyer D (2011) Prise en compte de l’incertitude. Applications à la dosimétrie électromagnétique numérique, AG Interférences d’Ondes, CNAM Paris
Lalléchère S, Bonnet P, Paladian F (2012) Modèle stochastique de cellule électrique pour des applications en bio-compatibilité électromagnétique. In: Proc. Numelec2012. Marseille, France
Schwan HP (1963) Electric characteristics of tissues: a survey. Biophysics 1:198
Foster KR, Schwan HP (1996). In: Polk C, Postow E (eds) Handbook of biological effects of electromagnetic fields. CRC, Boca Raton, pp 89-1–89-3
Zheng S, Mac DH, Coorevits T, Clénet S, Mipo JC (2012) Modélisation des incertitudes géométriques d’un stator en vue d’une quantification des performances d’une machine électrique. In: Proc. NUMELEC, 2012. Marseille, France
Stroud AH (1957) Remarks on the disposition of points in numerical integration formulas. Math Tables Other Aids Comput 11(3):1118–1139
Xiu D, Hesthaven JS (2005) High order collocation methods for differential equations with random inputs. SIAM J Sci Comput 27(3):1118–1139
Lalléchère S, Bonnet P, El Baba I, Paladian F (2011) Unscented transform and stochastic collocation methods for stochastic electromagnetic compatibility. In: Proc. CEM11. Izmir, Turkey
Iooss B (2011) Revue sur l’analyse de sensibilité globale de modèles numériques. J Soc Française Stat 152(1):3–25
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lalléchère, S., Bonnet, P. & Paladian, F. Electrical stochastic modeling of cell for bio-electromagnetic compatibility applications. Ann. Telecommun. 69, 295–308 (2014). https://doi.org/10.1007/s12243-013-0364-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12243-013-0364-9