Skip to main content
Log in

Design of digitally controlled multiple-pattern time-modulated antenna arrays with phase-only difference

  • Published:
annals of telecommunications - annales des télécommunications Aims and scope Submit manuscript

Abstract

An optimization approach based on differential evolution (DE) is proposed to design multiple-pattern time-modulated linear antenna arrays (TMLAAs) with phase-only control by using 5-bit digital phase shifters. The synthesized multiple patterns include a pencil beam (PB), a flat-topped beam (FTB), and a cosec squared pattern (CSP). The function of the DE is to find, simultaneously, a common, i.e., fixed, set of continuous values of switch-on time durations and discrete static excitation amplitudes for 5-bit digital attenuators, and different sets of discrete excitation phase distributions for 5-bit digital phase shifters; to generate different power patterns in the far field of the TMLAA. By perturbing the static amplitude distribution of a 20-element TMLAA in the discrete search range of “(0.2–1),” the patterns are obtained by reducing side lobe levels (SLLs) to almost −20 dB and sideband levels (SBLs) to less than −25 dB. Towards the end, the same on-time and amplitude distribution is used to produce a symmetric side lobe (S-SL) and asymmetric side lobe (A-SL) CSP, and their usefulness under a noisy signal environment is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chakraborty A, Das BN, Sanyal GS (1982) Beam shaping using nonlinear phase distribution in a uniformly spaced array. IEEE T Antenn Propag AP-30:1031–1034

    Article  Google Scholar 

  2. Bucci OM, Mazzarella G, Panariello G (1991) Reconfigurable arrays by phase-only control. IEEE T Antenn Propag 39(7):919–925

    Article  Google Scholar 

  3. Durr M, Trastoy A, Ares F (2000) Multiple-pattern linear antenna arrays with single prefixed amplitude distributions: modified Woodward-Lawson synthesis. Electron Lett 36(16):1345–1346

    Article  Google Scholar 

  4. Diaz X, Rodriguez JA, Ares F, Moreno E (2000) Design of phase-differentiated multiple-pattern antenna arrays. Microw Opt Technol Lett 26:52–53

    Article  Google Scholar 

  5. Gies D, Rahmat-samii Y (2003) Particle swarm optimization for recon-figurable phase differentiated array design. Microw Opt Technol Lett 38:168–175

    Article  Google Scholar 

  6. Mahanti GK, Chakraborty A, Das S (2006) Design of phase-differentiated reconfigurable array antennas with minimum dynamic range ratio. IEEE Antennas Wirel Propag Lett 5:262–264

    Article  Google Scholar 

  7. Mahanti GK, Chakraborty A, Das S (2007) Design of fully digital controlled reconfigurable array antennas with fixed dynamic range ratio. J Electromagn Waves Appl 21(1):97–106

    Article  Google Scholar 

  8. Chatterjee A, Mahanti GK, Mahapatra PRS (2011) Design of fully digital controlled reconfigurable dual-beam concentric ring array antenna using gravitational search algorithm. Progress Electromagn Res C 18:59–72

    Article  Google Scholar 

  9. Azrar A, Chemsa A, Aksas R (2007) Novel analysis and design approaches of the planar antenna arrays. Ann Telecommun 62(9–10):1053–1078

    Google Scholar 

  10. Gilloire A, Sizune H (2009) RFI mitigation of GNSS signals for radio astronomy: problems and current techniques. Ann Telecommun 64(9–10):625–638

    Article  Google Scholar 

  11. Shanks HE, Bickmore RW (1959) Four dimensional electromagnetic radiators. Can J Phys 37(3):263–275

    Article  MATH  Google Scholar 

  12. Kummer WH, Villeneuve AT, Fong TS, Terrio FG (1963) Ultra-low side-lobes from time-modulated arrays. IEEE T Antenn Propag 1(6):633–639

    Article  Google Scholar 

  13. Yang S, Gan YB, Tan PK (2003) A new technique for power-pattern synthesis in time-modulated linear arrays. IEEE Antennas Wirel Propag Lett 2:285–287

    Article  Google Scholar 

  14. Bregains JC, Fondevila Gomez J, Franceschetti G, Ares F (2008) Signal radiation and power losses of time-modulated arrays. IEEE T Antenn Propag 56(6):1799–1804

    Article  Google Scholar 

  15. Yang S, Gan YB, Tan PK (2004) Evaluation of directivity and gain for time modulated linear antenna arrays. Microw Opt Technol Lett 42(2):167–171

    Article  Google Scholar 

  16. Yang S, Gan YB, Qing A (2002) Sideband suppression in time-modulated linear arrays by the differential evolution algorithm. IEEE Antennas Wirel Propag Lett 1:173–175

    Article  Google Scholar 

  17. Mandal SK, Mahanti GK, Ghatak R (2013) A single objective approach for suppressing sideband radiations of ultra-low side lobe patterns in time-modulated antenna arrays. J Electromagn Waves Appl 27(14):1767–1775

    Article  Google Scholar 

  18. Mandal SK, Mahanti GK, Ghatak R (2013) Differential evolution algorithm for optimizing the conflicting parameters in time-modulated linear array antennas. Progress Electromagn Res B 51:101–118

    Article  Google Scholar 

  19. Fondevila J, Bregains JC, Ares F, Moreno E (2004) Optimizing uniformly excited linear arrays through time modulation. IEEE Antennas Wirel Propag Lett 3(1):298–301

    Article  Google Scholar 

  20. Fondevila J, Bregains JC, Ares F, Moreno E (2006) Application of time-modulation in the synthesis of sum and difference patterns by using linear arrays. Microw Opt Technol Lett 48:829–832

    Article  Google Scholar 

  21. Yang S, Gan YB, Qing A, Tan PK (2005) Design of uniform amplitude time modulated linear array with optimized time sequences. IEEE T Antenn Propag 53(7):2337–2339

    Article  Google Scholar 

  22. Poli L, Rocca P, Manica L, Massa A (2010) Pattern synthesis in time-modulated linear arrays through pulse shifting. IET Microw Antennas Propag 4(9):1157–1164

    Article  Google Scholar 

  23. Manica L, Rocca P, Poli L, Massa A (2009) Almost time independent performance in time-modulated linear arrays. IEEE Antennas Wirel Propag Lett 8:843–846

    Article  Google Scholar 

  24. Tong Y, Tennant A (2011) Reduced sideband levels in time-modulated arrays using half-power sub-arraying techniques. IEEE T Antenn Propag 59(1):301–303

    Article  Google Scholar 

  25. Tong Y, Tennant A (2012) Sideband level suppression in time modulated linear arrays using modified switching sequences and fixed bandwidth elements. Electron Lett 48(1):10–11

    Article  Google Scholar 

  26. Li G, Yang S, Chen Y, Nie Z (2009) A novel electronic beam steering technique in time modulated antenna arrays. Prog Electromagn Res 97:391–405

    Article  Google Scholar 

  27. Tennant A, Chambers B (2007) A two-element time-modulated arrays with direction-finding properties. IEEE Antennas Wirel Propag Lett 6:64–65

    Article  Google Scholar 

  28. Tennant A (2010) Experimental two-element time-modulated direction finding array. IEEE T Antenn Propag 58(3):986–988

    Article  Google Scholar 

  29. Poli L, Rocca P, Oliveri G, Massa A (2011) Harmonic beam forming in time modulated linear arrays. IEEE T Antenn Propag 59(7):2538–2545

    Article  Google Scholar 

  30. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359

    Article  MATH  MathSciNet  Google Scholar 

  31. Das S, Suganthan PN (2011) Differential evolution: a survey of the state-of-the-art. IEEE Trans Evol Comput 15(1):4–31

    Article  Google Scholar 

  32. Rocca P, Benedetti M, Donelli M, Franceschini D, Massa A (2009) Evolutionary optimization as applied to inverse scattering problems. Probl Topical Rev 25:1–41

    MathSciNet  Google Scholar 

  33. Rocca P, Oliveri G, Massa A (2011) Differential evolution as applied to electromagnetics. IEEE Antennas Propag Mag 53(1):38–49

    Article  Google Scholar 

  34. Keizer WPMN (2007) Fast low sidelobe synthesis for large planar array antennas utilizing successive fast fourier transforms of the array factor. IEEE T Antenn Propag AP-55(3):715–722

    Article  Google Scholar 

  35. Keizer WPMN (2009) Low-sidelobe pattern synthesis using iterative fourier techniques coded in MATLAB. IEEE Antennas Propag Mag 51(2):137–150

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Mandal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mandal, S.K., Mahanti, G.K., Ghatak, R. et al. Design of digitally controlled multiple-pattern time-modulated antenna arrays with phase-only difference. Ann. Telecommun. 70, 29–35 (2015). https://doi.org/10.1007/s12243-014-0426-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12243-014-0426-7

Keywords