Skip to main content
Log in

Bit error rate analysis of chaotic cognitive radio system over slow fading channels

  • Published:
annals of telecommunications - annales des télécommunications Aims and scope Submit manuscript

Abstract

In this paper, we analyze the bit error rate (BER) performance of a chaotic cognitive radio (CCR) system, which enjoys benefits of high security provided by a chaotic communication system and high flexibility in non-contiguous spectrum access offered by an overlay cognitive radio (CR) system. In the proposed CCR system, the chaotic sequence is generated in the frequency domain instead of in the time domain, hence enabling non-contiguous spectrum access. We hereby derive the bit error rate expressions of CCR systems over additive white Gaussian noise (AWGN) channel and slow flat Rayleigh, Rician, and Nakagami fading channels. Specifically, we use the probability distribution of the chaotic map to evaluate the energy distribution of the transmitted signals over the identified non-continuous subcarrier bands, and then apply the definite integral representation of Q-function to calculate the bit error rate. The results from theoretical analysis and numerical simulations are compared, demonstrating an excellent agreement between the two approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ren HP, Baptista MS, Grebogi C (2013) Wireless communication with chaos. Phys Rev Lett 110(18):184101

    Article  Google Scholar 

  2. Stavroulakis P (2006) Chaos applications in telecommunications. CRC Press, London

    Google Scholar 

  3. Lau FCM, Tse CK (2003) Chaos-based digital communication systems. Springer, New York

    Book  MATH  Google Scholar 

  4. Escribano FJ, Wagemakers A, Sanjuan MAF (2014) Chaos-based turbo systems in fading channels. IEEE Trans Circ Syst I 61(2):530–541

    Google Scholar 

  5. Dmitreiv AS, Hasler M, Panas AI, Zakharchenko KV (2003) Basic principles of direct chaotic communications. Nonlinear Phenom Compl Syst 6(1):408–511

    Google Scholar 

  6. Khodor N, Cances J, Meghdadi V, Quere R (2012) Performances of chaos-coded modulation concatenated with Alamouti’s space-time block code. Annales des Telecommun Ann Telecommun 67(1–2):27–55

    Article  Google Scholar 

  7. Kaddoum G, Gagnon F (2013) Performance analysis of STBC-CSK communication system over slow fading channel. Signal Process 93(7):2055–2060

    Article  Google Scholar 

  8. Simon H (2005) Cognitive radio: brain-empowered wireless communications. IEEE J Sel Areas Commun 23 (2):201–220

    Article  Google Scholar 

  9. Saeedzarandi M., Azmi P, Simon H (2013) Cooperative multiband joint detection in cognitive radio networks using artificial immune system. Ann Telecommun 68(3–4):239–246

    Article  Google Scholar 

  10. Sundersingh1 D, Chakarvarthy V, Wu Z (2012) Frequency domain processing based chaos communication for cognitive radio. Virginia Tech Wireless Symposium

  11. Zhou R, Li X, Zhang J, Wu Z (2011) Software defined radio based frequency domain chaotic cognitive radio. IEEE SOCC Conference 259–264

  12. Xia Y, Tse CK, Lau FCM (2004) Performance of differential chaos shift-keying digital communication systems over a multipath fading channel with delay spread. IEEE Trans Circ Syst II 51(12):680–684

    Article  Google Scholar 

  13. Zhibo Z, Tong Z, Jinxiang W (2008) Performance of multiple-access DCSK communication over a multipath fading channel with delay spread. Circ Syst Sign Process 27(4):507–518

    Article  MATH  Google Scholar 

  14. Long M, Chen Y, Peng F (2012) Bit error rate improvement for chaos shift keying chaotic communication systems. IET Commun 6(16):2639–2644

    Article  MathSciNet  Google Scholar 

  15. Kaddoum G, Gagnon F (2013) Performance analysis of STBC-CSK communication system over slow fading channel. Signal Proc 93(7):2055–2060

    Article  Google Scholar 

  16. Kaddoum G, Charge P, Roviras D, Fournier-Prunaret D (2009) A methodology for bit error rate prediction in chaos-based communication systems. Circ Syst Sign Process 28(6):925–944

    Article  MATH  Google Scholar 

  17. Kaddoum G, Gagnon F (2014) Lower bound on the bit- error rate of a decode-and-forward relay network under chaos shift keying communication system. IET Commun 8(2):227–232

    Article  Google Scholar 

  18. Fang Y, Xu J, Wang L, Chen G (2013) Performance of MIMO relay DCSK-CD systems over Nakagami fading channels. IEEE Trans Circ Syst I Regular Papers 60(3):757–767

    Article  MathSciNet  Google Scholar 

  19. Kaddoum G, Richardson F, Gagnon F (2013) Design and analysis of a multi-carrier differential chaos shift keying communication system. IEEE Trans Commun 61(8):3281–3291

    Article  Google Scholar 

  20. Kaddoum G, Shokraneh F (2015) Analog network coding for multi-user multi-carrier differential chaos shift keying communication system. IEEE Trans Wirel Commun 14(3):1492–1505

    Article  Google Scholar 

  21. Kaddoum G, Giard P (2014) Analog network coding for multi-user spread-spectrum communication systems. IEEE Wirel Commun Netw Conf (WCNC):352–357

  22. Yang D, Liu Z, Zhou J (2014) Chaos optimization algorithms based on chaotic maps with different probability distribution and search speed for global optimization. Commun Nonlinear Sci Numer Simul 19(4):1229–1246

    Article  MathSciNet  Google Scholar 

  23. Proakis JG (2001) Digital communications. McGraw-Hill, New York

    Google Scholar 

  24. Alouini M, Goldsmith AJ (1999) A unified approach for calculating error rates of linearly modulated signals over generalized fading channels. IEEE Trans Commun 47(9):1324–1334

    Article  Google Scholar 

  25. Sandhu GS, Berber S (2009) Theoretical model, simulation results and performances of a secure chaos-based multiuser communication system. Int J Netw Secur 8(1):25–30

    Google Scholar 

  26. Fu H, Crussière M, Hélard M (2013) Spectral efficiency optimization in overlapping channels using TR-MISO systems. IEEE Wirel Commun Netw Conf:3770–3775

Download references

Acknowledgments

The funding supports from the Pilot Project (No. 20140101) and Normal Project (No. 20150207) of SYSU-CMU Shunde International Joint Research Institute, and the SYSU 100 Top Talents Program (No. 35000-1188134) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Lu, H., Wu, Z. et al. Bit error rate analysis of chaotic cognitive radio system over slow fading channels. Ann. Telecommun. 70, 513–521 (2015). https://doi.org/10.1007/s12243-015-0472-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12243-015-0472-9

Keywords

Navigation