Skip to main content
Log in

A novel channelized FB architecture with narrow transition bandwidth based on CEM FRM

  • Published:
Annals of Telecommunications Aims and scope Submit manuscript

Abstract

The two key requirements of channelized filter bank in the design of a digital receiver are low computational complexity and reconfigurability. Modulated discrete Fourier transform (MDFT) filter bank permits sub-channel with linear phase characteristics and provides high degree of computational efficiency. However, with sub-channel exhibiting narrow transition bandwidth in MDFT filter bank, the length of the prototype filter becomes long prohibitively, which can reduce the computational efficiency. It is well known that the frequency response masking (FRM) provides an attractive technique for the realization of digital filters with very narrow transition bandwidth. In this paper, the FRM digital filter design technique and another important technique named complex-exponential modulation (CEM) are exploited and applied to the design of a novel cascaded channelized filter bank to realize selective sub-channel with very narrow transition bandwidth. A simulation is provided to illustrate the design of the proposed CEM filter bank. It is shown that the resulting filter bank entails less computational complexity substantially and reduces multiplier resource consumption comparing to the conventional MDFT filter bank.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Mitola J (2000) Software radio architecture. Wiley-Interscience, New York

    Book  Google Scholar 

  2. Hentschel T (2002) Channelization for software defined base-stations. Ann Telecommun 57(5–6):386–420

    Google Scholar 

  3. Mahesh R, Vinod AP (2008) Reconfigurable frequency response masking filters for software radio channelization. IEEE Trans Circuits Syst II 55(3):274–278

    Article  Google Scholar 

  4. Fred H, Elettra V, Xiaofei C, Chris D (2014) An efficient channelizer tree for portable software defined radios. Ann Telecommun 69(1-2):99–110

    Article  Google Scholar 

  5. Yipeng L, Qun W (2014) Compressive slow-varying wideband power spectrum sensing for cognitive radio. Ann Telecommun 69(9-10):559–567

    Article  Google Scholar 

  6. Zangi KC, Koilpillai RD (1999) Software radio issues in cellular base stations. IEEE J Sel Areas Commun 17(4):561–573

    Article  Google Scholar 

  7. Nan L, Behrouz N (2006) Application of frequency response masking technique to the design of a novel modified DFT filter banks. IEEE ISCAS 5(33):30–36

    Google Scholar 

  8. Lizhi Z, Jiangping Q, Wenyu L (2009) New filter bank design method based on CEM FRM technique. J Inf Eng Univ (Chinese) 10(2):177–180

    Google Scholar 

  9. Wenyu L, Liang J, Kaizhi H, Lizhi Z (2011) Low complexity HBCEM FRM poly-phase filter bank. J Data Acquis Process (Chinese) 26(1):74–79

    Google Scholar 

  10. Vinod AP, Lai EMK (2005) On the implementation of efficient channel filters for wideband receivers by optimizing common subexpression elimination methods. IEEE Trans Comput-Aided Design Integer Circuits Syst 24(2):295–304

    Article  Google Scholar 

  11. Jiafeng W, Xiaoqi G (2009) Realization of digital channelization without blind zone. Commun Technol (Chinese) 42(03):7–9

    Google Scholar 

  12. Runjiang M, Lei X (2007) The theory and simulation of a channelized transmitter based on software radio. Commun Technol (Chinese) 40(12):97–98

    Google Scholar 

  13. Darak SJ, Vinod AP, Mahesh R, Lai EMK (2010) A reconfigurable filter bank for uniform and non-uniform channelization in multi-standard wireless communication receivers. Telecommunications (ICT), in 2010 I.E. 17th international conferences, Doha Qatar, 951-956

  14. Chonghoon K, Yoan S, Sungbin I, Woncheol L (2000) SDR-based digital channelizer/de-channelizer for multiple CDMA signals. In Proc. of the Vehicular Technology Conference 52nd, Boston 2862-2869

  15. Tay DBH (2011) Design of halfband filters for orthonormal wavelets using ripple-pinning. IET Signal Proc 5(1):40–48

    Article  Google Scholar 

Download references

Acknowledgments

This paper is supported by the National Natural Science Foundation of China (Grant no. 61301200) and the Fundamental Research Funds for the Central Universities of China (Grant no. HEUCF1508).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenxu Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Li, P., Zhang, W. et al. A novel channelized FB architecture with narrow transition bandwidth based on CEM FRM. Ann. Telecommun. 71, 27–33 (2016). https://doi.org/10.1007/s12243-015-0477-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12243-015-0477-4

Keyword

Navigation