Skip to main content
Log in

Relay selection in two-way full-duplex relay networks over Nakagami-m fading channels

  • Published:
Annals of Telecommunications Aims and scope Submit manuscript

Abstract

We analyze the outage performance of relay selection in two-way full-duplex amplify-and-forward cooperative systems in the presence of residual loop-interference (LI) over Nakagami-m fading channels. In the proposed system, a relay node is selected according to max-min policy and the physical-layer-network-coding technique is applied for two-way transmission. By using end-to-end signal-to-interference-plus-noise-ratio, a new exact outage probability expression is derived in a single-integral form. The numerical and Monte-Carlo simulation results verify the analysis. Moreover, lower-bound and asymptotic expressions for the outage probability are obtained in closed-form. The numerical results reveal that the max-min selection policy provides a significant performance improvement for two-way full-duplex relaying. We observe that the outage performance can be enhanced as long as either the number of relay nodes, the transmit power, or the efficiency of the LI cancellation process increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Laneman JN, Tse DNC, Wornell GW (2004) Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Trans Inf Theory 50(12):3062–3080. https://doi.org/10.1109/TIT.2004.838089

    Article  MathSciNet  MATH  Google Scholar 

  2. Zhao Q, Li H (2006) Distributed modulation for cooperative wireless communications. In: 2006 40th annual conference on information sciences and systems, pp 1068–1072. https://doi.org/10.1109/CISS.2006.286624

  3. Louie RHY, Li Y, Vucetic B (2010) Practical physical layer network coding for two-way relay channels: performance analysis and comparison. IEEE Trans. Wireless Commun 9(2):764–777. https://doi.org/10.1109/TWC.2010.02.090314

    Article  Google Scholar 

  4. Riihonen T, Werner S, Wichman R (2009) Optimized gain control for single-frequency relaying with loop interference. IEEE Trans Wireless Commun 8(6):2801–2806. https://doi.org/10.1109/TWC.2009.080542

    Article  Google Scholar 

  5. Hong S, Brand J, Choi J I, Jain M, Mehlman J, Katti S, Levis P (2014) Applications of self-interference cancellation in 5G and beyond. IEEE Commun Mag 52(2):114–121. https://doi.org/10.1109/MCOM.2014.6736751

    Article  Google Scholar 

  6. Duarte M, Dick C, Sabharwal A (2012) Experiment-driven characterization of full-duplex wireless systems. IEEE Trans Wireless Commun 11(12):4296–4307. https://doi.org/10.1109/TWC.2012.102612.111278

    Article  Google Scholar 

  7. Krikidis I, Suraweera HA, Smith PJ, Yuen C (2012) Full-duplex relay selection for amplify-and-forward cooperative networks. IEEE Trans Wireless Commun 11(12):4381–4393. https://doi.org/10.1109/TWC.2012.101912.111944

    Article  Google Scholar 

  8. Choi D, Lee JH (2014) Outage probability of two-way full-duplex relaying with imperfect channel state information. IEEE Commun Lett 18(6):933–936. https://doi.org/10.1109/LCOMM.2014.2320940

    Article  Google Scholar 

  9. Cui H, Ma M, Song L, Jiao B (2014) Relay selection for two-way full duplex relay networks with amplify-and-forward protocol. IEEE Trans Wireless Commun 13(7):3768–3777. https://doi.org/10.1109/TWC.2014.2322607

    Article  Google Scholar 

  10. Li Y, Wang T, Zhao Z, Peng M, Wang W (2015) Relay mode selection and power allocation for hybrid one-way/two-way half-duplex/full-duplex relaying. IEEE Commun Lett 19(7):1217–1220. https://doi.org/10.1109/LCOMM.2015.2433260

    Article  Google Scholar 

  11. Li Y, Li N, Peng M, Wang W (2016) Relay power control for two-way full-duplex amplify-and-forward relay networks. IEEE Signal Process Lett 23(2):292–296. https://doi.org/10.1109/LSP.2016.2517020

    Google Scholar 

  12. Zhang Z, Ma Z, Xiao M, Karagiannidis GK, Ding Z, Fan P (2016) Two-timeslot two-way full-duplex relaying for 5G wireless communication networks. IEEE Trans Commun 64(7):2873–2887. https://doi.org/10.1109/TCOMM.2016.2574845

    Article  Google Scholar 

  13. Zhang Z, Chen Z, Shen M, Xia B (2016) Spectral and energy efficiency of multipair two-way full-duplex relay systems with massive MIMO. IEEE J Select Areas Commun 34(4):848–863. https://doi.org/10.1109/JSAC.2016.2544458

    Article  Google Scholar 

  14. Shim Y, Choi W, Park H (2016) Beamforming design for full-duplex two-way amplify-and-forward MIMO relay. IEEE Trans Wireless Commun PP(99):1–1. https://doi.org/10.1109/TWC.2016.2587768

    Google Scholar 

  15. Do TP, Le TVT (2015) Power allocation and performance comparison of full duplex dual hop relaying protocols. IEEE Commun Lett 19(5):791–794. https://doi.org/10.1109/LCOMM.2015.2414432

    Article  Google Scholar 

  16. Gradshteyn IS, Ryzhik IM (2007) Table of integrals, series, and products, 7th edn. Elsevier/Academic Press, Amsterdam

    MATH  Google Scholar 

  17. Kumbhani B, Kshetrimayum RS (2014) Outage probability analysis of spatial modulation systems with antenna selection. Electron Lett 50(2):125–126. https://doi.org/10.1049/el.2013.3466

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asil Koç.

Appendix: Proof of Eq. 10

Appendix: Proof of Eq. 10

By using [9, Eq. (35)], the CDF of γ i, b can be given by

$$\begin{array}{@{}rcl@{}} {F_{{\gamma_{i,b}}}}\left( z \right) &=& \sum\limits_{c = 1}^{N} {\int\limits_{x = 0}^{z} {{f_{{\gamma_{i,c}}}}\left( x \right)\Pr \left( {x \le {\gamma_{j,c}}} \right)} }\\ &&\times\prod\limits_{p = 1\hfill\atop p \ne c\hfill}^{N} {\Pr } \left[ {\min \left( {{\gamma_{i,p}},{\gamma_{j,p}}} \right) \le x} \right]dx\\ &&+ \sum\limits_{c = 1}^{N} {\int\limits_{x = 0}^{z} {{f_{{\gamma_{i,c}}}}\left( x \right)} } \Pr \left( {x > {\gamma_{j,c}}} \right) \\ &&\times \prod\limits_{p = 1\hfill\atop p \ne c\hfill}^{N} {\Pr } \left[ {\min \left( {{\gamma_{i,p}},{\gamma_{j,p}}} \right) \le {\gamma_{j,c}}} \right]dx\\ &=& N\int\limits_{x = 0}^{z} {{f_{{\gamma_{i,c}}}} \left( x \right) \left[ {{{\bar F}_{{\gamma_{i,c}}}} \left( x \right) {{\left( {1 - \bar F_{{\gamma_{i,c}}}^{2} \left( x \right)} \right)}^{N - 1}}} \right.}\\ &&+ \int\limits_{y = 0}^{x} {{f_{{\gamma_{i,c}}}} \left( y \right)} \left. {{{\left( {1 - \bar F_{{\gamma_{i,c}}}^{2} \left( y \right)} \right)}^{N - 1}}dy} \right]dx \end{array} $$
(39)

where \({\bar F}_{{\gamma _{i,c}}}\left (\cdot \right )=1-F_{{\gamma _{i,c}}}\left (\cdot \right )\). By substituting the PDF and CDF expressions of γ i, c given in Section 2.1, the above expression is rewritten as

$$\begin{array}{@{}rcl@{}} {F_{{\gamma_{i,b}}}}\left( z \right) &=& \frac{{N{\mu^{m}}}}{{{\Gamma} \left( m \right)}}\int\limits_{x = 0}^{z} {\frac{{{x^{m - 1}}{\Gamma} \left( {m,\mu x } \right)}}{{{e^{\mu x }}{\Gamma} \left( m \right)}}{{\left[ {1 - {{\left( {\frac{{{\Gamma} \left( {m, \mu x } \right)}}{{{\Gamma} \left( m \right)}}} \right)}^{2}}} \right]}^{N - 1}}}\\ &&+ \frac{{{x^{m - 1}}{\mu^{m}}}}{{{e^{\mu x }}{\Gamma} \left( m \right)}}\int\limits_{y = 0}^{x} {\frac{{{y^{m - 1}}}}{{{e^{\mu y }}}}} {\left[\! {1 \!- {{\left( {\frac{{{\Gamma} \left( {m,\mu y } \right)}}{{\Gamma \left( m \right)}}} \right)}^{2}}} \right]^{N - 1}}dydx\\ \end{array} $$
(40)

where Γ(⋅,⋅) is the upper incomplete Gamma function [16, Eq. (8.350.2)]. For the integer values of m, by using binomial expansion and [16, Eq. (8.352.4)],

$$ \begin{array}{llllll} F&_{{\gamma_{i,b}}}\left( z \right) = \frac{{N{\mu^{m}}}}{{{\Gamma} \left( m \right)}}\sum\limits_{k = 0}^{N - 1} {\left( {\begin{array}{*{20}{c}} {N - 1}\\ k \end{array}} \right){{\left( { - 1} \right)}^{k}}} \\ &\times \underbrace {\left\{ {\int\limits_{x = 0}^{z} {\frac{{{x^{m - 1}}}}{{{e^{\left( {2k + 2} \right)\mu x}}}}{{\left[ {\sum\limits_{q = 0}^{m - 1} {\frac{{{{\left( {\mu x} \right)}^{q}}}}{{q!}}} } \right]}^{2k + 1}}} } dx \right.}_{{I_{3}}} + \frac{{{\mu^{m}}}}{{{\Gamma} \left( m \right)}}\\ &\times \underbrace {\left. {\int\limits_{x = 0}^{z} {\frac{{{x^{m - 1}}}}{{{e^{\mu x}}}}\int\limits_{y = 0}^{x} {\frac{{{y^{m - 1}}}}{{{e^{\left( {2k + 1} \right)\mu y}}}}} {{\left[ {\sum\limits_{q = 0}^{m - 1} {\frac{{{{\left( {\mu y} \right)}^{q}}}}{{q!}}} } \right]}^{2k}}dy} dx} \right\}}_{{I_{4}}} \end{array} $$
(41)

can be obtained. For the solution of the first integration I 3, we need to use multinomial coefficients as in [17, Eq. (7)] and [16, Eq. (3.351.1)]. Then, I 3 is found as

$$\begin{array}{@{}rcl@{}} {I_{3}} &=& \sum\limits_{t = 0}^{{\theta_{1}}} {{\Phi}_{t}^{2k + 1}{\mu^{t}}\int\limits_{x = 0}^{z} {\frac{{{x^{t + m - 1}}}}{{{e^{\left( {2k + 2} \right)\mu x}}}}dx} } \\ &=& \sum\limits_{t = 0}^{{\theta_{1}}} {\frac{{{\Phi}_{t}^{2k + 1}\gamma \left[ {t + m,\left( {2k + 2} \right)\mu z} \right]}}{{{\mu^{m}}{{\left( {2k + 2} \right)}^{t + m}}}}} \end{array} $$
(42)

where 𝜃 1 = (2k + 1)(m − 1) and \({\Phi }_{t}^{2k+1}\) is the coefficient of (μx)t in the expansion of

$$ {{{\left[ {\sum\limits_{q = 0}^{m - 1} {\frac{{{{\left( {\mu x} \right)}^{q}}}}{{q!}}} } \right]}^{2k + 1}}}. $$
(43)

The other expression I 4 is composed of double-integrals. The inner integration inside I 4 can be found by following the same steps applied to I 3 and it is given by

$$ {I_{4}} = \sum\limits_{t = 0}^{{\theta_{2}}} {\frac{{{\Phi}_{t}^{2k}{\mu^{- m}}}}{{{{\left( {2k + 1} \right)}^{t + m}}}}} \int\limits_{x = 0}^{z} {\frac{{\gamma \left[ {t + m,\left( {2k + 1} \right)\mu x} \right]}}{{{x^{1 - m}}{e^{\mu x}}}}} dx $$
(44)

where 𝜃 2 = 2k(m − 1) and \({\Phi }_{t}^{2k}\) is also the coefficient of (μy)t in the expansion of

$$ {{{\left[ {\sum\limits_{q = 0}^{m - 1} {\frac{{{{\left( {\mu y} \right)}^{q}}}}{{q!}}} } \right]}^{2k}}}. $$
(45)

By applying both [16, Eq. (8.352.6)] and [16, Eq. (3.351.1)], respectively, I 4 can be easily found in a closed-form as

$$\begin{array}{@{}rcl@{}} {I_{4}} &=& \sum\limits_{t = 0}^{{\theta_{2}}} {\frac{{{\Phi}_{t}^{2k}{\Gamma} \left( {m + t} \right)}}{{{\mu^{2m}}{{\left( {2k + 1} \right)}^{t + m}}}}} \\ &&\times \left[ {\gamma \left( {m,\mu z} \right) - \sum\limits_{v = 0}^{t + m - 1} {\frac{{\gamma \left[ {m + v,\left( {2k + 2} \right)\mu z} \right]}}{{v!{{\left( {2k + 2} \right)}^{m + v}}{{\left( {2k + 1} \right)}^{- v}}}}} } \right].\!\\ \end{array} $$
(46)

Finally, the CDF of γ i, b given in Eq. 10 can be obtained by substituting (42) and (46) into (41).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koç, A., Altunbaş, İ. & Yongaçoğlu, A. Relay selection in two-way full-duplex relay networks over Nakagami-m fading channels. Ann. Telecommun. 72, 731–742 (2017). https://doi.org/10.1007/s12243-017-0603-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12243-017-0603-6

Keywords

Navigation