Abstract
In this paper, we introduce an emergency optical network design problem for the low-cost post-disaster recovery of core optical transport networks. We take into account both the interconnection of the surviving multi-vendor resources and the utilization of portable emergency erbium-doped fiber amplifiers (EDFAs). The surviving multi-vendor optical nodes (e.g., reconfigurable optical add/drop multiplexer (ROADM) or wavelength cross-connect (WXC) nodes) and fiber links are the available resources during a disaster recovery and should be efficiently utilized first. The portable EDFAs are emergency resources added to replace the optical nodes that have either been destroyed or are down because of power outages. To solve this design problem, we propose an emergency network planning method using an integer linear programming (ILP) formulation such that the locations for the emergency interconnection of the multi-vendor networks and placement of the portable EDFAs are optimally selected. Evaluations show the benefits of the multi-vendor interconnection approach and utilization of emergency portable EDFAs.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12243-017-0619-y/MediaObjects/12243_2017_619_Fig1_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12243-017-0619-y/MediaObjects/12243_2017_619_Fig2_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12243-017-0619-y/MediaObjects/12243_2017_619_Fig3_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12243-017-0619-y/MediaObjects/12243_2017_619_Fig4_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12243-017-0619-y/MediaObjects/12243_2017_619_Fig5_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12243-017-0619-y/MediaObjects/12243_2017_619_Fig6_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12243-017-0619-y/MediaObjects/12243_2017_619_Fig7_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12243-017-0619-y/MediaObjects/12243_2017_619_Fig8_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12243-017-0619-y/MediaObjects/12243_2017_619_Fig9_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12243-017-0619-y/MediaObjects/12243_2017_619_Fig10_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12243-017-0619-y/MediaObjects/12243_2017_619_Fig11_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12243-017-0619-y/MediaObjects/12243_2017_619_Fig12_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12243-017-0619-y/MediaObjects/12243_2017_619_Fig13_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12243-017-0619-y/MediaObjects/12243_2017_619_Fig14_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12243-017-0619-y/MediaObjects/12243_2017_619_Fig15_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12243-017-0619-y/MediaObjects/12243_2017_619_Fig16_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12243-017-0619-y/MediaObjects/12243_2017_619_Fig17_HTML.gif)
Similar content being viewed by others
References
Mukherjee, B. (2006). Optical WDM networks, Springer-Verlag New York Inc., 2006
Sivakumar, M. Maciocco, C. Mishra, M. Sivalingam, K. M. (2003). A hybrid protection-restoration mechanism for enhancing dual-failure restorability in optical mesh-restorable networks. in Proc, 4th Ann SPIE Int Conf Opt Netw Commun 2003, pp.37–48.
Ramasubramanian S, Chandak A (2008) Dual-link failure resiliency through backup link mutual exclusion. IEEE/ACM Trans Networking 16(1):157–169
Habib M, Tornatore F, De Leenheer M, Dikbiyik M, Mukherjee F, B. (2012) Design of disaster-resilient optical datacenter networks. IEEE J Lightwave Technol 30(16):2563–2573
Requirements for network resilience and recovery. ITU-T FG-DR&NRR, Version 1.0 (05/2014).
Wang J, Qia C, Yu H (2011) On progressive network recovery after a major disruption. In Proc. IEEE INFOCOM 2011
Yu H, Yang C (2011) Partial network recovery to maximize traffic demand. IEEE Commun Lett 15(12):1388–1390
Sabeh, K. Al. Tornatore, M. Dikbiyik, F. (2015). Progressive network recovery in optical core networks. in Proc. Reliable Networks Design and Modeling (RNDM2015). pp. 106–111.
Ma C, Zhang J, Zhao Y, Habib MF, Savas SS, Mukherjee B (2015) Traveling repairman problem for optical network recovery to restore virtual networks after a disaster [invited]. J Opt Commun Networking 7(11):B81–B92
Tsuritani, T. Guo, H. Lee, J. Okamoto, S. Yoshikane, N. Otani, T. (2008). GMPLS-controlled all-optical mesh networking demonstration using path computation-capable NMS. in Proc. ECOC2008, We.1.B.1.
Okamoto, S. Tsuritani, T. Yoshida, S. Fujii, T. Kubo, K. Nishioka, I. Sakauchi, M. Araki, S. Seno, S. Tsurusawa, M. (2009). Multi-vendor interoperability demonstration of wavelength switched optical network (WSON) with GMPLS lambda-label extension. in Proc. ECOC2009, paper 3.2.4.
Liu L, Zhang D, Tsuritani T, Vilalta R, Casellas R, Hong L, Morita I, Guo H, Wu J, Martinez R, Munoz R (2012) Field trial of an openflow-based unified control plane for multilayer multigranularity optical switching networks. IEEE J Lightwave Technol 31(4):506–514
Xu S, Yoshikane N, Shiraiwa M, Furukawa H, Tsuritani T, Awaji Y, Wada N (2013). Emergent optical network integration and control of multi-vendor optical networks for quick disaster recovery. in Proc. ECOC2013, We.4.E.6
Xu S, Shiraiwa M, Yoshikane N, Tsuritani T, Harai H, Awaji Y, Wada N (2014) Smooth quick-in and fade-out operations-enabled emergency optical networks for disaster recovery. in Proc. OFC2014, W2A.57
Xu S, Yoshikane N, Shiraiwa M, Furukawa H, Tsuritani T, Awaji Y, Wada N (2016) Emergency optical network construction and control with multi-vendor interconnection for quick disaster recovery. IEICE Trans Commun E99–B(2):370–384
Awaji Y, Furukawa H, Puttnam B, Wada J, Chan P, Man R (2010) Burst-mode optical amplifier. in Proc OFC2010, OThI
Shiraiwa M, Awaji Y, Furukawa H, Shinada S, Puttnam BJ, Wada N (2013) Performance evaluation of a burst-mode EDFA in an optical packet and circuit integrated network. Opt Express 21(26):32589–32598
ITU-T Recommendation L.81, “Monitoring systems for outside plant facilities”, Study Group 15, Series L, no. L.81, Version 1.0 (13/11/2009). https://www.itu.int/rec/T-REC-L.81-200911-I
Sakaki T, Okazaki M, Matsuo Y (2010) Earthquake shakes Twitter users: real-time event detection by social sensors. in Proc. the 19th International Conference on World Wide Web, pp. 851–860
Twitter, http://twitter.com/
Technical report on telecommunications and disaster mitigation. ITU-T FG-DR&NRR, Version 1.0 (06/2013)
Sakano T, Tsukishima Y, Hasegawa H, Tsuritani T, Hirota Y, Arakawa S, Tode H (2013) A study on a photonic network model based the regional characteristic of Japan. Tech. Rpt. IEICE, PN2013-01 (in Japanese)
IBM CPLEX, https://www-1.ibm.com/software/commerce/optimization/cplex-optimizer/
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Xu, S., Yoshikane, N., Shiraiwa, M. et al. Emergency optical network planning with multi-vendor interconnection and portable EDFAs. Ann. Telecommun. 73, 127–138 (2018). https://doi.org/10.1007/s12243-017-0619-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12243-017-0619-y