
Geo-aware erasure coding for high performance
erasure coded storage clusters

Lakshmi J Mohan∗, Pablo Ignacio Serrano Caneleo†, Udaya Parampalli‡ and Aaron Harwood§

Department of Computing and Information Systems,
University of Melbourne, Australia

Email: ∗ljagathamma@student.unimelb.edu.au,†pabloserranocaneleo@gmail.com,
‡udaya@unimelb.edu.au,§aharwood@unimelb.edu.au

Abstract—Erasure code based distributed storage systems are
increasingly being used by storage providers for big data storage
since they offer same reliability as replication with a significant
decrease in the amount of storage required. But, when it comes
to a storage system with data nodes spread across a very large
geographical area, the node’s recovery performance is affected by
various factors that are both network and computation related.
In this paper, we present a XOR-based code supplemented with
the ideas of parity duplication and rack awareness that could
be adopted in such storage clusters to improve the recovery
performance during node failures and compare it with popular
implementations of erasure codes, namely Facebook’s Reed
Solomon codes and XORBAS local recovery codes. The code
performance along with the proposed ideas are evaluated on a
geo-diverse cluster deployed on the NeCTAR research cloud. We
also present a scheme for intelligently placing blocks of coded
storage depending on the design of the code, inspired by local
reconstruction codes. The sum of all these propositions could
offer a better solution for applications that are deployed on coded
storage systems that are geographically distributed; in which
storage constraints make triple replication not affordable, at the
same time ensuring minimal recovery time is a strict requirement.

I. I NTRODUCTION

Large scale data storage centers that store and process big-
data are a commonplace today. Most cloud service providers
are building geo-distributed network of data centers that have
their data nodes spanning wide geographical areas [1]. Typ-
ical examples of some of the practical scenarios are traffic
monitoring system of a large city, medical diagnostic system
connecting various hospitals in a country, climate monitoring
and reporting system [2] and other scientific applications
[3], to name a few. All these systems have storage nodes
distributed across a wide geography and a centralized node
acting as master that co-ordinates the storage and computation
spread across data nodes. These are real applications that
involve large scale distributed processing of massive volumes
of data. Availability, reliability and performance efficiency are
of utmost importance in these data centers.

For ensuring availability and reliability, many large scale
commercial data centers, by default, rely on replication;
wherein the same copy of the data is replicated and stored

∗This work was supported by Data61/CSIRO.
Pablo Ignacio Serrano Caneleo† is now with Federico Santa Maria Technical
University, Chile.

at multiple locations for protecting data from node failure
events. Failure events area norm rather than the exception
in data centers. For example, in the recent years, Facebook
has reported an important number of erasures occasioned by
node failures, device malfunctions, scheduled maintenance,
network outages and other related events [4], [5], [6]. However,
replication involves a monetary cost with increased storage
requirement that it brings in, and hence is highly inefficient.
Erasure codes serve as a better alternate solution to replication
since they offer the same reliability as compared to replication
with significant decrease in the storage overhead incurred
[7], [8], [4], [9], [10]. In erasure coding, a file to be stored
is divided into chunks (blocks) of fixed size, and the code
encodes a set of these data blocks, to create parity (code)
blocks. The group of data blocks and its corresponding parity
blocks is called astripe. When devices fail leading to loss
of blocks, the decode operation repairs the lost block by
employing the surviving data and parity blocks.

However, erasure codes with an additional cost of com-
putation requirement in the event of recovery from node
failures. If replication is used for providing resiliency,the lost
data can be recovered simply by copying it from one of the
available replicas. But, for erasure coded storage, failednode
recovery involves fetching source and parity data from the
surviving nodes, resulting in a significant amount of network
traffic. More precisely, it involves downloading data from a
specific number of the live nodes to a worker node where
the repair process is initiated, computation operation at the
worker node for repairing the lost data, followed by copying
the result to another node in the storage cluster, making it
both a computation and network intensive operation. In geo-
distributed data centres, data can be stored at any of the
available data centres and can be requested to be downloaded
from a data centre that is at the other end of the globe. With
erasure codes, this translates to significantly larger network
latency and cost involved in retrieving the data required for
repair. In short, employing erasure codes in geo-distributed
storage aggravates recovery performance upon node failures
since the network latency and performance-related factorsadd
to the problem, as observed and reported in our previous work
[11].

A. Our contribution

This paper addresses the open problem of improving repair
performance of erasure coded storage nodes in a geo-diverse
cluster setting. Though there has been active research on en-
hancing repair performance in the context of storage in recent
times, all existing codes are designed for the conventional
setting of co-located storage nodes. When deployed for storage
on a cluster with geo-located nodes, they do not fare well in
terms of repair performance as reported. Repair performance
of storage erasure codes in geo-distributed context needs a
different strategy of problem treatment. This work presents the
following methodologies in geo-distributed clusters to improve
a XOR-based code, that are observed to help improve repair
efficiency:

• configuration of topology awareness
• replication of parity blocks

We improve the XOR-based code by extending it in such a
way that they decrease the repair bandwidth in geo-diverse
storage clusters. Furthermore, we also propose a heuristic
termed code awareplacement of blocks, embracing the
design principles behind local repair codes. The results and
analysis are reported with real cluster configurations set-up
on the NeCTAR [12] research cloud that validate proposed
methodologies in improving repair performance for large scale
geo-distributed cluster settings.

The XOR-based code with our improvements is compared
with the original Reed-Solomon erasure code running on Face-
book’s storage archives [13] developed on Apache Hadoop
and a code based on the idea of local parities [14]. The
experiments use a set of storage clusters distributed across di-
verse geographical locations across Australia on the NeCTAR
research cloud for simulating a geo-distributed data center. The
technique increases the storage requirement of the data center,
but results in decreased recovery time and recovery bandwidth,
making it a better choice for big data applications mounted on
large geo-distributed data centers.

Our experiments were run on archival type test data (cold
data). Hadoop’s erasure code module can be used to store
frequently accessed (hot) data as well. In such a context,
storage is accessed more often. If failure occurs when a user
accesses his/her stored data, it has to be repaired and restored
to the file system storage with practically non-noticeable
delays. This is technically called ’ad-hoc’ repair as opposed
to the usual repairs that are triggered after being noticed by
theRaidNodedaemon during its routine scan. Hence, ensuring
reliability at extremely fast rates to the user becomes highly
significant. There are a number of real applications where
triple-replicated storage is not cost-effective and user access
frequencies are more than that of conventional cold storage.
For example, let us consider the example of analyzing a
graph of bitcoin transactions that was derived by parsing all
blocks since the genesis block in the bitcoin blockchain. The
transaction graph is stored in Hadoop file system, and can get
very big as the transactions grow. Keeping triple replicas is not
practical; thereby, the user erasure codes the block chain data

and stores it. Any node failure is to be recovered in ’ad-hoc’
mode and reducing recovery time becomes critical in such
practical user-facing storage processing applications.

B. Organization of the paper

The remainder of the paper is organized as follows: The
related work in the literature is reviewed in the next section;
followed by Section-III which presents an overview of erasure
codes and the repair problem in the geo-diverse context. The
next section gives a brief introduction to Hadoop and its era-
sure codes implementation. Section-V explains multiple XOR
code implementation and the techniques supplementing it,
followed by the design of the experimental storage cluster and
the experiments done in the following section. The next section
describes metrics reported and presents detailed analysisof
the results. It also proposes and validates the heuristic that
placement of blocks based on the code design would lead to
better repair performance. Finally, Section-VIII concludes the
paper.

II. RELATED WORK

As indicated earlier in Section-I, classical erasure codes
are sub-optimal in distributed storage environments because
of the repair problem.Even though only a single data block
is lost, recovery requires transferring all other blocks inthe
corresponding stripe to a certain node that will perform the
recovery operation, and subsequently regenerate the lost block.
This results in consumption of considerable network band-
width and disk I/O during data recovery, sometimes referred
to as recovery overhead in the literature.

Consequently, the problem of decreasing the recovery over-
head in the event of node failures in erasure in coded storage
systems has received considerable attention in the recent past,
both in theory and practice. Binary MDS codes are popular
because of their use in disk array systems and have been
worked on extensively by researchers. Some examples are
EVEN-ODD and RDP codes [15], [16]. These codes have
been enhanced to support optimal recovery in the papers [17],
[18] respectively. A coding scheme, calledpyramid codes, to
improve read performance during node repairs is presented in
[19], but it incurs additional storage space than conventional
schemes. In [4], the authors present a new framework with
conventional Reed Solomon codes that make single node
failure recovery efficient both in terms of network bandwidth
and disk I/O, without incurring extra storage space.

Another popular domain of code construction is based on
the idea ofreconstruction locality, which means the number
of nodes contacted during repair. There has been substantial
research in recent times on code constructions that are based
on locality [20], [21], [22], [23], [24]. Implementations of local
repair codes in practical storage systems can be found in [7]
and [5]. Local repair codes focus on achieving faster recovery
with some trade-off in the storage requirement of the system.

Reducing repair latency in distributed storage systems with
heterogeneous link capacities is explored in the recent work
[25], based on the observation that regeneration time depends

heavily on selection of the participating nodes that help in
the process. The use of erasure codes in geo-diverse storage
clusters is explained in [26] for storing binary large objects.
Geo-replicated XOR coding is deployed alongside with Reed
Solomon codes for adding data centre fault tolerance. XOR of
storage in two different data centres is computed and stored
in a third data centre.

Reducing recovery overhead in coded storage systems is an
extensively explored subject. However, extending it to geo-
diverse storage has not been addressed in literature so far;this
is the focus of our paper.

III. E RASURE CODES AND THE REPAIR PROBLEM IN

GEO-DISTRIBUTED DATA CENTERS

A storage system using erasure coding has an array ofn
disks, each having the same size. Of thesen disks, k of
them hold data and the remainingm hold coding information,
namedparity, which is calculated form the data. The most pop-
ular choice are MDS (Maximum Distance Separable) codes,
which have the property that if anym disks fail, the original
data may be reconstructed from the remainingk disks, i.e,k
out of thesen nodes suffice for data recovery. In terms of the
redundancy-reliability trade-off, MDS codes are optimal.Reed
Solomon codes (RS) [27] are a well-known family of MDS
erasure codes.

1) Galois fields: A finite field (Galois field) is a finite
set of elements on which the operations additions, subtrac-
tion, multiplication and division are defined based on some
fundamental rules. The term ’symbol’ represents an element
of a finite field. RS codes are defined over Galois Fields
of size 2w, represented byGF (2w). During encoding, a RS
algorithm encodes a message ofk symbols inton = m + k
symbols, wheren ≤ 2w, in such a way that the original
message can be reconstructed from any subset of sizek
of the encoded symbols. The decoding operation involves
solving a set of linear equations with Gaussian elimination
or matrix inversion. The CPU complexity forGF operations
is expensive and many open source implementations exist that
implement libraries forGF operations supporting RS coding;
the most popular being Jerasure [28], based on which Hadoop
RS codes are built. There is another family of codes, that
is purely based only on XOR operations. These codes do
not require expensiveGF computation and hence perform
encoding and decoding faster.

2) Methodology: The repair problem of recovering from
node failures involve contacting the required number of sur-
vivor nodes based on the code design, downloading data from
them, performing the decode operation and writing back the
recovered data to the storage. In a geo-distributed cluster,
in addition to the computation cost associated withGF
operations, there are other issues related to node locationand
network latency. Making computation cheaper and thinking of
other clever mechanisms to improve recovery performance are
the solutions to tackle this issue, which is precisely what we
have tried to accomplish in this work.

IV. H ADOOP AND ITS ERASURE CODES

HDFS is Hadoop’s distributed file system which is designed
to store very large volumes of data reliably across storage
locations and to stream those data at high bandwidth to client
applications. Hadoop uses mapreduce paradigm for its com-
putations of very large data sets. By distributing storage and
computation across many nodes, the resources can grow with
demand. A Hadoop cluster can scale computation capacity,
storage capacity and I/O bandwidth just by adding commodity
hardware. HDFS stores filesystem metadata on the namenode
and application data separately on data nodes. The nodes
communicate among themselves based on TCP/IP protocol.
By default, the datanodes in HDFS do not rely on data protec-
tion mechanisms like RAID for reliability. The implementation
of Hadoop is based on the Google File System (GFS) [29].

HDFS-RAID [8] is the module in HDFS that implements
erasure codes based on Reed-Solomon codes. This module is
an open source and it runs on erasure coded storage system
employed in large scale production clusters at Facebook.
HDFS-RAID has a list of files that are to be erasure coded
and periodically performs erasure coding of these files. It also
performs the recovery operation when blocks are missing or
get corrupted. The recovery operation calls the decoder of the
erasure code for reconstructing the file. The RAID module
also handlesdegraded readrequests that are redirected from
HDFS, in which case the requested block is reconstructed on
the fly by the daemon calledRaidNode. The encoding and
decoding operations are carried out as MapReduce jobs in the
cluster.

V. M ULTI -XOR CODE

In this section, the multi-xor (MXOR) code design and its
storage trade-off are explained. Thereafter, stripe design in
various codes, location awareness and parity replication are
discussed.

A. Code design and storage trade-off

The MXOR code is a simple code design which takes a
single stripe of source blocks (amounting to10 blocks) like
XORBAS and FB erasure codes. This code is presented in
[6] where it is used to build an adaptive erasure coded system
that can switch between hot and cold data storage dynamically
depending on the system workload. We use it here with the
aim of improving the recovery performance in our geo-diverse
cluster setting. These codes belong to the class of block array
codes.

MXOR code rearranges ten blocks into two rows of five
blocks each, as shown in Fig. 1. and computes five vertical
XOR parity blocks and two horizontal parity blocks, resulting
in a total of seven parity blocks. Having only XORs as parities
ensures that the computation complexity involved in recovery
is trivial. It is clearly evident from the design that it is very
efficient in handling one node failures by only involving the
download of two of the surviving nodes, using only the vertical
parities. Let us assume the data node that stores the block
data8 shuts down. To recover it, the code requires only the

blocks data3 and parity3 to be downloaded and XORed at
the recovery worker node. However, MXOR codes can handle
multiple failures, by leveraging the horizontal parities with
the vertical parities and fixing the location of the lost block.
We have implemented MXOR codes as a new erasure code
on top of Facebook’s Reed Solomon and XORBAS LRC, by
modifying the open-source project available at [14].

A general implementation using an(n, k) Reed Solomon
code, requires the download of anyk of the remaining data
blocks, which makes the reconstruction process slower and
inefficient. Thus, MXOR codes are ideal in improving the
recovery performance. The trade-off in using this code is that
it requires extra storage i.e. 1.7x storage overhead, whereas the
Reed Solomon codes used in Facebook’s RAID module results
in 1.4x storage overhead and the XORBAS code requires 1.6x.

data1 data2 data3 data4 data5

data6 data7 data8 data9 data10

parity1 parity2 parity3 parity4 parity5

parity6

parity7

+ + + + +

++

+

Fig. 1: Multiple XOR code design

B. Stripe design in various codes

With conventional(n, k) erasure codes, data is stored across
n nodes in the network in a way that the entire data can be
reconstructed by a data collector by connecting to anyk nodes.
A practical example is(14, 10) Reed-Solomon (RS) code used
in Hadoop distributed storage clusters which codes10 data
blocks by adding4 extra parity blocks, resulting in14 coded
blocks that get stored on to different nodes on the cluster. The
set ofn blocks that are encoded or decoded together is called
a stripe.

Let B be the total file size measured in terms of symbols
(elements) over a finite field. RS codes treat each fragment
stored in a node as a single symbol belonging to the finite
field. It is known that when individual nodes are restricted
to perform only linear operations, the total amount of data
download needed to repair a failed node, can be no smaller
thanB.

In contrast, regenerating codesare codes over a vector
alphabet and hence treat each fragment as being comprised
of α symbols over the field. Linear operations here permit
the transfer of a fraction of the data stored at a particular
node. Apart from this new parameterα, two other parameters
associated with regenerating codes. A failed node is permitted
to connect to a fixed numberd of the remaining nodes while
downloadingβ ≤ α symbols from each node. This process
is termed asregenerationand the total amountdβ of data

Code Stripe blocks Stripe size
Facebook’s Reed
Solomon

10 source+ 4
parity blocks

14

XORBAS LRC 10 source+ 6
parity blocks

16

MXOR 10 source+ 7
parity blocks

17

Table I: Stripe structure in various code schemes studied

downloaded for repair purposes as therepair bandwidth. Typ-
ically, with a regenerating code, the average repair bandwidth
is small compared to the size of the fileB.

Facebooks RS code, XORBAS LRC code and MXOR code
are erasure codes that consider a stripe as a simple combination
of source blocks and parity blocks in a row. Table I below
summarizes stripe structure for various code designs that are
analysed in this paper.

Vector code designs:There is a different type of code called
MDS array code, where each symbol is a vector or a column,
and gets stored in a different node. It hasr parities and can
correct uptor erasures of entire columns. Fig. 2 shows a
(6, 4) code with column lengthl = 2 and number of parities
r = 2. There are four storage nodes that store data blocks and
two parity nodes that store code blocks. These codes have the
optimal repair property, meaning that to repair a node, only
a fraction of1/r data needs to be transmitted. This fraction
is computed based on multiplying the code matrices with the
repair matrices, that are carefully designed.

Fig. 2: Long MDS code (n=6,k=4,l=2)

In this code example, to repair the loss ofN1, we transmit
the first row from all other remaining nodes. To repairN2,
transmit the second row from all other nodes. To repairN3,
we need to transmit the sum of both rows of all other nodes.
And to repair N4, we transmit the sum of the first row and
2 times the second row from nodesN1, N2, N3, P1 and the
sum of the first row and3 times the second row from node
P2. The coefficients to be multiplied for the computation and
the data to be transmitted are based on the repair matrices that
are built for the code design.

The stripe definition here would have to take into consider-
ation all the symbols of the vector from all the corresponding
columns. At times, we need to perform some computation
on a part of data that is read from a node and then use the
resulting value in the recovery process. This idea is popularly
referred to by the termsub-packetizationin the coding theory
community.

C. Harnessing the topology awareness

Network topology plays a critical role in clusters that
are geographically distributed, because repair performance
depends on how close the surviving node is to the recovery
worker node. In the experimental test cluster, we have data
nodes spanning three locations. We can make Hadoop aware of
this geographical assignment by specifying the cluster nodes
as belonging to separate racks via a script and making the
corresponding changes in the configuration files. The steps to
perform this are detailed in the Appendix.

Without the rack awareness, all data nodes in the cluster are
treated by Hadoop as belonging to a single location; thereby
placing the block replicas of the file randomly. But, according
to the default placement policy, the first replica of a block is to
be placed in the local rack (where the client data writer node
runs), second replica in another node belonging to a different
rack and the third replica is to be placed in another node in
the same rack where the second replica was placed.

Topology awareness is harnessed by making Hadoop aware
of geographically distributed nodes in its cluster. This isdone
by introducing location-awareness, which in turn leads to
the locations treated as separate racks in the cluster. After
this modification, block placement happens exactly as per the
default placement policy. We have made use of this location
awareness of Hadoop in storing extra copies of parities to suit
our requirement of improving the recovery performance, as
explained in the next sub-section.

D. Parity duplication and the trade-offs

Hadoop, similar to other distributed storage systems, re-
lies on replication as the primary method of ensuring fault-
tolerance [30]. We extend this analogy to replicating parity
blocks with the idea that having more copies of parities will
increase the chances of locality in our geo-diverse cluster
setting. We store two replicas of parities aiming to bringing
down the time taken for recovery from node failure. The trade-
off is the storage overhead incurred by having an additional
replica of the parity blocks. The resulting storage overhead for
various erasure codes that have been evaluated in our work is
shown in Table. II.

Code Replication Storage Over-
head

Facebook’s Reed
Solomon

2 1.8x

XORBAS LRC 2 2.2x
MXOR code 2 2.4x

Table II: Impact of Double Replicating parities in various codes

In XORBAS and MXOR, despite increasing the storage
overhead, this can bring huge benefits in our cluster by ensur-
ing locality; the scenario when the parity replica is available
at the location where the repair worker node is assigned by
Hadoop to carry out the recovery process. Having an extra
replica of parity blocks leads to higher chances of contacting
a node belonging to the same location as the worker node;
thereby resulting in locality which in turn leads to faster

recovery from failure. We monitored this in our test data
cluster and our results confirm that parity replication brings
the recovery times down in our cluster.

In the case of MXOR, since only two blocks are needed
for a single node failure recovery, parity duplication further
enhances the performance of reconstruction if worker and
the required blocks belong to the same location; which is a
highly probable scenario. Increasing the parity replicas beyond
2 seems not to be a viable option, since it increases the
storage requirement close to or more than triple replication;
and thereby losing the benefit gains of using codes for storage.

However, in a data center with nodes belonging to more
number of locations, increasing parity replicas will certainly
improve the recovery performance but at the cost of increasing
storage requirement.

VI. D ESIGN AND SET UP OF THEEXPERIMENTAL STORAGE

CLUSTER

The experimental cluster is built on the national research
cloud, NeCTAR (National e-Research Collaboration Tools and
Resources). It is a federated Australian Research Cloud which
partners with Australian universities and research institutions
to create a national cloud for Australian researchers. It is
located at eight different organisations (availability zones)
around Australia, operating as one cloud system. Our test
cluster has45 data nodes spread across Australia, at three
locations namely Tasmania, Queensland and Perth. These are
controlled by a single master node that is located at Tasmania
zone. The node locations with the average ping times from the
master node in Tasmania to the three data node locations are
shown in Fig. 3.

Fig. 3: Node locations along with ping times from the master node in theexperimental
cluster

The instances run on virtual machines of type m1.small
which are machines with 1 core, 4GB RAM, 30GB hard disk.
The framework and the bash scripts developed as part of our
previous work [11] are used here for setting up the cluster and

automation of the test execution process. All node failuresare
simulated by stopping the datanode manually. This is done
by ssh-logging to the datanode and running the bash script
’stop-datanode.sh’ from its terminal. Given below are the steps
followed in the experiments:

1) Upload files triple-replicated (default case)
2) Enable RAID for the file path and wait for parity

blocks to be generated, extra replicas to be deleted and
block movements to prevent co-located placements to be
completed

3) Simulate single/double node failure (node to fail is
chosen randomly) by stopping data node script on the
node manually

4) Record repair time taken for repairing the lost block
5) Iterate the steps (1-4) twenty times; for all three codes,

with/without parity replication and with/without location
awareness

VII. R ESULTS AND ANALYSIS

The experimental results are focussed only on single node
and double node recovery scenarios. Single node failure is
the most common one in practice, followed by double node
failures. It is reported in [31] that 98.08% of all repairs involve
recovering a single block in a stripe.

A. Metrics of interest

The primary metric used for evaluating the recovery per-
formance is repair time in milliseconds taken by the recovery
worker to perform the repair, which is the total of decode time
and wait time. Repair time is the metric used very commonly
for measuring the decode performance of erasure codes [32],
[4], [6], [5]. We know that to repair a block, some surviving
blocks to be read and downloaded. HDFS-RAID does this
by opening parallel input data streams to data nodes that store
those required blocks. This time corresponds toread time, and
is dependent on disk I/O, network bandwidth and latency. De-
coding operation happens simultaneously with read operation,
and both operations are implemented as concurrent threads.
The decoder process, which is responsible for repairing the
failed block, needs to wait at times for input data to be read and
made available for decoding to happen. This period of time,
when there is no computation happening, and the thread waits
for read data to come in, is denoted aswait time.The actual
CPU time consumed for the decode computations is called
decode time.Reading time reflects the disk I/O performance;
decoding time represents the CPU workload and waiting time
reveals the implementation and network efficiency. Fig. 4.
shows the relationship between the three times as a function
of time flow.

Apart from the repair time, the amount of data read for
repair (denoted as HDFSBytesRead) by the repair worker
node and the total CPU time taken for repair process are also
measured from the logs.

Fig. 4: Read, decode and wait times of the repair process: read and decode happen
concurrently; the time CPU is idle waiting for data to be read in-order to decode,is the
wait time.

B. Analysis of Results

The results of single node repair performance is discussed
first. The plots in Fig. 5 show the repair times consumed during
repairing a single node failure under all three experimental test
cases that are studied. Fig. 5(a) shows single node recovery
times when the setting is run without location awareness and
parity replication. Fig.5(b) reports the times when Hadoopis
aware of the the location but parity meta replication is not
enabled. In Fig. 5(c), plotted are the results when both location
awareness and parity replication are set. The values in the box
plots are obtained by running20 iterations of the experiment
script.

In all three cases, it is clearly evident that MXOR codes
perform faster recovery as compared to FB RS codes and
XORBAS LRC codes, confirmed by reduction in all metrics
that were plotted. XORBAS LRC is observed to perform
confirming the claimed performance in the paper [5] with a
decrease in repair times by (10-15)% as compared to FB RS,
over all test cases. In the absence of location awareness, repair
efficiency of code is affected by the surviving nodes for repair
being far from the recovery worker node; increasing the repair
times, as seen from Fig. 5(a). The plots in Fig. 5(b) confirm
that setting location awareness has resulted in decreasingthe
decode and wait times of RS and XORBAS codes. This idea
is also discussed in previous papers such as [7], [32], [5] and
[10]. Fig. 6 shows the average recovery times (sum of decode
and wait times) of the three codes under assessment in the
above mentioned settings.

Plot in Fig. 5(c) shows that replicating parities, along with
rack awareness has contributed to further reduction in recovery
times of RS and XORBAS codes. Replication of parity blocks
increases their availability; which in turn helps in perform-

0

2500

5000

7500

10000

12500

15000

17500

20000

RS XORBAS MXOR

Code

T
im

e
 t

a
k
e
n

 f
o
r

re
c
o
v
e
ry

Times Read Decode Wait

 a. With no location awareness
 and no parity replication

0

2500

5000

7500

10000

12500

15000

17500

20000

RS XORBAS MXOR

Code

T
im

e
 t

a
k
e
n

 f
o
r

re
c
o
v
e
ry

Times Read Decode Wait

b. With location awareness
 and no parity replication

0

2500

5000

7500

10000

12500

15000

17500

20000

RS XORBAS MXOR

Code

T
im

e
 t

a
k
e
n

 f
o
r

re
c
o
v
e
ry

Times Read Decode Wait

c. With both location awareness
 and parity replication

Fig. 5: Repair times during single node failure

RS XORBAS MXOR

R
ec

ov
er

y
tim

es

0
10

00
0

20
00

0
30

00
0

40
00

0

No location awareness, no parity replication
With location awareness, no parity replication
With both location awareness and parity replication

Fig. 6: Average recovery times (single node failure) of codes under different settings

ing faster repairs. The motivation behind replicating parities
was triple replication inherent in Hadoop’s architecture,that
ensures reliability of hot data. There has been recent works
which map the replication idea to erasure coded storage [32],
[10].

Figure 7 shows the total CPU time in seconds taken by the
worker node to perform the repair of single node failure for the
three codes under analysis. Figure 8 shows the codes assessed
vs. the mega bytes read during repair process during single
node failure. It is seen that both the parameters decrease as
we move from RS to XORBAS to MXOR codes. Reducing
the bytes read has a direct impact on the network bandwidth
consumed during recovery process; lesser the bytes read,

RS XORBAS MXOR

Coding Scheme

C
P

U
 t
im

e
 i
n
 s

e
c
o
n
d
s
 t
a
ke

n
 b

y
 t
h
e
 r

e
c
o
ve

ry
 w

o
rk

e
r

0
5

1
0

1
5

2
0

2
5

Fig. 7: Storage code scheme vs. CPU time (single node failure)

better it is. Decreasing CPU times is evident of the fact
that the repair job needs lesser computations with XORBAS
and MXOR codes as compared to RS codes. Considering
double node failure scenario, the same set of experiments
were repeated simulating two nodes failure scenario with the
same configuration settings and the metrics were measured.
Fig. 9 shows the recovery times across various test cases
considered. The recovery times are found to be decreasing
with the addition of the ideas of topology awareness and parity
replication. RS and XORBAS code schemes have gained good
benefits from location awareness and parity meta replication.

RS XORBAS MXOR

Coding Scheme

H
D

F
S

M
e
g
a
B

y
te

s
 r

e
a
d
 f
o
r

re
c
o
ve

ry

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

Fig. 8: Storage code scheme vs. MegaBytes Read (single node failure)

C. Observations

From the results of experiments simulating single and
double node failures, it is observed that parity replication,
augmented with location awareness offers significant improve-
ments in the recovery performance of RS and XORBAS codes
in the cluster. It is interesting to note that MXOR code
does not gain benefit in recovery performance as compared
to RS and XORBAS codes. During single node failure, it
requires downloading only one parity block for recovery, hence
having extra copies of parities become less relevant resulting in
no improvements. Double node failure demands downloading
only a subset of surviving nodes depending on the blocks that
are lost. This is in contrast to RS codes, where each of the
two failures involve downloadingk of the remaining surviving
blocks.

D. Towards erasure-code aware block placement policies

In this section, we start with the proposition that in a
geographically distributed cluster, if the block placement is
done intelligently, improvements in recovery performanceis
achieved. Any erasure code has a structure, and geographical
diversity demands spreading blocks of the coded stripe across
nodes at disparate locations. We propose a heuristic that, when
this spreading is done taking into consideration the structure
of the code, it will result in better recovery performance. The
results of two different experiments and their observations are
given below to support the proposed heuristic.

Results and observations on fully distributed vs. fully
centralized clusters:Towards this, the results of recovery
performance of Facebook’s RS codes and XORBAS code
are presented. The tests are run on two clusters set up on
the NeCTAR research cloud that are drastically opposite in
the geo-distribution of their data nodes. Both clusters have
25 data nodes each, with a single master node located in
Tasmania availability zone. Cluster-1 has all nodes confined
to a single location: Tasmania, whereas Cluster-5 has nodes
distributed across five disparate locations across Australia,
namely Tasmania, Queensland, South Australia, New South

Wales and Melbourne. To be more precise, Cluster-1 has no
geo-diversity at all; while Cluster-5 has the most geo-diversity
in terms of the locations of their nodes. In both cases, single
node failure is simulated (by choosing a node randomly to
fail) and recovery times are measured.

In Fig. 10, the recovery performance of Facebook’s RS
codes is compared with XORBAS local parity codes, with
data results obtained by running40 iterations of test script on
Cluster-5. The local parities in XORBAS only require XOR
operations to recover from node failures. With reference to
the plots in Fig. 10(a) and (b), local parities have helped
in improving read performance in Cluster-5. This directly
translates to reduction in wait times, because required blocks
are already read and available for decoding computation. The
peak points of reading times represent the recovery processes
that involved the interaction among helper nodes located
farthest from each other. Fig. 11 presents the test case results
when run on Cluster-1. The reading and decoding processes
are observed to perform faster here as compared to the case in
Cluster-5, the reason is attributed to the fact that all datanodes
available at the same location. To conclude, results show that
repair is faster when blocks of a stripe are placed into nodes
at a single location as opposed to placement on nodes spread
across a distributed cluster.

Results and observations on MXOR codes before and after
code aware block placement:The results and discussions
presented below motivate the heuristic further. From the results
and analysis presented in Section-VI (B), MXOR codes give
the best repair performance. Hence, the following discussion
is focussed only on MXOR codes.

Let us consider a storage cluster that has nodes spread across
L geographic locations. LetN be the total number of nodes
and li represent the number of nodes at any locationi. Let n
denote the number of blocks of a coded stripe. Given this, the
total number of possibilities with which cluster nodes can be
chosen to place coded blocks of any code is:

(∑

L
li

n

)

In MXOR code, during single node failure, the code design
demands only two (one source and one parity) among the
sixteen live blocks (please refer Fig. 1) to be downloaded for
recovery process to be initiated. The fastest recovery happens
when these three blocks are placed in the same location. The
code blocks can be separated into five locality groups, as
shown in Fig. 12. The two horizontal parities are not required
for repairing a single node failure, and hence they can be
grouped together with any of the other five groups.

After RAIDing, the blocks are placed according to a place-
ment policy that co-locates blocks belonging to the same
group, so that it will lead to optimal recovery performance
i.e, the placement of blocks belonging to any single group
is restricted to the same location. This restriction makes the
number of possibilities of placing coded blocks5 ∗

(

li

n

)

. The
heuristic was implemented and tested on HDFS-RAID module.

RAIDing is a two-step process in Hadoop-20’s HDFS-RAID

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

RS XORBAS MXOR

Code

T
im

e
 t

a
k
e
n

 f
o
r

re
c
o
v
e
ry

Times Read Decode Wait

 a. With no location awareness
 and no parity replication

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

RS XORBAS MXOR

Code

T
im

e
 t

a
k
e
n

 f
o
r

re
c
o
v
e
ry

Times Read Decode Wait

b. With location awareness
 and no parity replication

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

RS XORBAS MXOR

Code

T
im

e
 t

a
k
e
n

 f
o
r

re
c
o
v
e
ry

Times Read Decode Wait

c. With both location awareness
 and parity replication

Fig. 9: Repair times during double node failure

0 5 10 15 20 25 30 35 40

Iteration number in Cluster5

0

0.5

1

1.5

2

2.5

3

3.5

4

T
im

e
ta

ke
n

fo
r

re
pa

ir
w

ith
 F

B
 R

S
 c

od
es

104

Read Time
Decode Time
Wait time

(a) Facebook Hadoop in Cluster-5

0 5 10 15 20 25 30 35 40

Iteration number in Cluster5

0

0.5

1

1.5

2

2.5

3

3.5

4

T
im

e
ta

ke
n

fo
r

re
pa

ir
w

ith
 X

O
R

B
A

S
 c

od
es

104

Read Time
Decode Time
Wait time

(b) XORBAS Hadoop in Cluster-5

Fig. 10: Comparison of recovery times of Facebook Hadoop and XORBAS Hadoop onCluster5

module. Any file to be uploaded is triple-replicated first and
stored to file system (please refer to the steps mentioned in
Section-V) by default. Thereafter, storage is chosen to be
RAIDed by theRaidNodedaemon once a specific time period
(which can be set) elapses. The storage is arranged into stripes
and encoding operation computes parity blocks corresponding
to the source blocks in all stripes. After RAIDing completes,
extra replicas of all source blocks are deleted from the storage,
and replication is set to1. The RaidNodehas a thread called
PlacementMonitorthat periodically scans all the RAIDed di-

rectories at regular intervals. It checks if blocks of a stripe are
co-located in a node; if so, it prepares block move requests and
forwards them to theBlockMover. The BlockMoverexecutes
the move operation by moving the block to a different node in
the cluster. We modifiedPlacementMonitorto check whether
blocks are placed according to the locality group placementin
Fig. 12. If not, theBlockMovermoves them to their respective
groups. The locations of blocks after introducing the code
aware placement strategy is shown in Fig. 13. The test cluster
used here is the same that was set-up for testing recovery

0 5 10 15 20 25 30 35 40

Iteration number in Cluster1

0

0.5

1

1.5

2

2.5

3

3.5

4

T
im

e
ta

ke
n

fo
r

re
pa

ir
w

ith
 F

B
 R

S
 c

od
es

104

Read Time
Decode Time
Wait time

(a) Facebook Hadoop in Cluster-1

0 5 10 15 20 25 30 35 40

Iteration number in Cluster1

0

0.5

1

1.5

2

2.5

3

3.5

4

T
im

e
ta

ke
n

fo
r

re
pa

ir
w

ith
 X

O
R

B
A

S
 c

od
es

104

Read Time
Decode Time
Wait time

(b) XORBAS Hadoop in Cluster-1

Fig. 11: Comparison of recovery times of Facebook Hadoop and XORBAS Hadoop onCluster1

Fig. 12: Locality groups in MXOR codes

performance during single and double node failure scenarios.

Fig. 13: Erasure code aware blocks placement in MXOR codes

The experiment for simulating single node failure (with
location awareness) was conducted. Fig. 14 shows the recovery
times before and after code aware block placement. Results
reported are averaged over10 iterations and present improve-
ment in recovery performance with code aware placement of
blocks.

The new heuristic can be applied to any erasure code
in general. Let us consider the case of RS and XORBAS
codes. XORBAS, by design, has locality, and coded blocks
are separated into three groups. In a3 location cluster, it is the
mere task of restricting blocks of a group to a single location.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Before After

MXOR Code

T
im

e
 t

a
k
e
n

 f
o
r
 r

e
c
o
v
e
r
y

Times

Read

Decode

Wait

Fig. 14: Recovery times of MXOR codes before and after code aware placement strategy

In RS codes, all blocks of a stripe are needed to repair a
missing block; hence with3 location cluster we do a uniform
distribution. This groups the blocks into three groups of4
blocks each plus extra2 blocks. These three groups can be
placed to the three locations, and the left out2 blocks can be
placed randomly in any of the three locations.

From the above observations, it can be concluded that, a
better design that takes into account how the coded blocks are
placed to suit a geo-diverse cluster can help increase recovery
performance of any coded storage system. The results show
that placing blocks respecting the structure of the underlying
erasure code enhances performance during recovery from node
failures. It affirms the heuristic that there is possibilityof
optimization based on erasure code design, and also points out
further possibilities of optimizing based on other properties of
network characteristics that support coded storage. Modelling
storage network topologies with different cost parameters

like bandwidth and delay has been an open research area
and has not been addressed previously in literature. There
has been active research by different groups on codes that
reduce repair bandwidth. Influence of network topology on
codes has been investigated in the context of trees [33]. Most
of the storage networks today are much more diverse, with
different communication capacities and topologies. Minimum
communication needed to repair an erasure in such contexts
has not been studied in detail so far. This research area is
identified earlier by Dimakis et.al. in their celebrated paper
on network coding [34]. We leave this open problem for our
future work.

VIII. C ONCLUSION

When compared to an erasure coded storage system which
has all data nodes located at the same geographical location,
an erasure coded large scale distributed storage system spread
across wide geography entails more complex recovery from
node failure. To tackle this issue, we presented an assess-
ment of three popular codes along with two simple ideas
of managing location awareness information and maintaining
additional copies of parities; following which we presented a
heuristic that placing blocks intelligently based on the code
design would result in better repair performance. The results
of our study have revealed new facets of erasure codes when
implemented on Hadoop storage system in a geo-distributed
environment. Erasure codes, in particular are not a silver-bullet
solution for providing reliability.

The experimental results confirm that topology awareness
and metareplication improve recovery performance to some
extent. To get further improvements, a new block placement
policy that optimizes recovery performance and follows the
erasure code design shall be considered. The sum of all these
ideas could offer a better solution for a code based storage
system spanning a large geographical area.

ACKNOWLEDGEMENT

This research was supported by use of the Nectar Research
Cloud, a collaborative Australian research platform supported
by the National Collaborative Research Infrastructure Strategy
(NCRIS).

REFERENCES

[1] James C. Corbett and Jeffrey et. al. Spanner: Google’s globally-
distributed database. InProceedings of the 10th USENIX Conference on
Operating Systems Design and Implementation, OSDI’12, pages 251–
264, Berkeley, CA, USA, 2012. USENIX Association.

[2] Constantinos Evangelinos and Chris N. Hill. Cloud Computing for
parallel Scientific HPC Applications: Feasibility of Running Coupled
Atmosphere-Ocean Climate Models on Amazon’s EC2. Cloud Comput-
ing and Its Applications, October 2008.

[3] Jie Li, Marty Humphrey, Deborah A. Agarwal, Keith R. Jackson,
Catharine van Ingen, and Youngryel Ryu. escience in the cloud: A
modis satellite data reprojection and reduction pipeline inthe windows
azure platform. InIPDPS, pages 1–10. IEEE.

[4] K.V. Rashmi, Nihar B. Shah, Dikang Gu, Hairong Kuang, Dhruba
Borthakur, and Kannan Ramchandran. A ”hitchhiker’s” guide to fast and
efficient data reconstruction in erasure-coded data centers. SIGCOMM
Comput. Commun. Rev., 44(4):331–342, August 2014.

[5] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis,
R. Vadali, S. Chen, and D. Borthakur. Xoring elephants: Novel erasure
codes for big data.Proceedings of the VLDB Endowment, 2013.

[6] Mingyuan Xia, Mohit Saxena, Mario Blaum, and David A. Pease. A
tale of two erasure codes in hdfs. InProceedings of the 13th USENIX
Conference on File and Storage Technologies, FAST’15, pages 213–226,
Berkeley, CA, USA, 2015. USENIX Association.

[7] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus, BradCalder,
Parikshit Gopalan, Jin Li, and Sergey Yekhanin. Erasure coding in win-
dows azure storage. InProceedings of the 2012 USENIX Conference on
Annual Technical Conference, USENIX ATC’12, pages 2–2, Berkeley,
CA, USA, 2012. USENIX Association.

[8] HDFS-RAID. http://wiki.apache.org/hadoop/HDFS-RAID. [Online;
accessed 10-5-2017].

[9] Runhui Li, Jian Lin, and Patrick P. C. Lee. CORE: augmenting
regenerating-coding-based recovery for single and concurrent failures
in distributed storage systems.CoRR, abs/1302.3344, 2013.

[10] Kyumars Sheykh Esmaili, Lluis Pamies-Juarez, and Anwitaman Datta.
The CORE storage primitive: Cross-object redundancy for efficient data
repair & access in erasure coded storage.CoRR, abs/1302.5192,
2013.

[11] Lakshmi J. Mohan, Renji Luke Harold, Pablo Ignacio Serrano Caneleo,
Udaya Parampalli, and Aaron Harwood. Benchmarking the performance
of hadoop triple replication and erasure coding on a nation-wide
distributed cloud. In2015 International Symposium on Network Coding,
NetCod 2015, Sydney, Australia, June 22-24, 2015, pages 61–65, 2015.

[12] NeCTAR. https://www.nectar.org.au. [Online; accessed 10-5-2017].
[13] Facebook Hadoop-20. https://github.com/facebookarchive/hadoop-20.

[Online; accessed 10-5-2017].
[14] Hadoop-USC. https://github.com/madiator/HadoopUSC.[Online; ac-

cessed 10-5-2017].
[15] M. Blaum, J. Brady, J. Bruck, and Jai Menon. Evenodd: an efficient

scheme for tolerating double disk failures in raid architectures. IEEE
Transactions on Computers, 44(2):192–202, Feb 1995.

[16] V. R. Cadambe, S. A. Jafar, H. Maleki, K. Ramchandran, and C. Suh.
Asymptotic interference alignment for optimal repair of mds codes
in distributed storage. IEEE Transactions on Information Theory,
59(5):2974–2987, May 2013.

[17] Z. Wang, A. G. Dimakis, and J. Bruck. Rebuilding for arraycodes in
distributed storage systems. In2010 IEEE Globecom Workshops, pages
1905–1909, Dec 2010.

[18] Liping Xiang, Yinlong Xu, John C.S. Lui, and Qian Chang.Optimal
recovery of single disk failure in rdp code storage systems. In
Proceedings of the ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems, SIGMETRICS ’10,
pages 119–130, New York, NY, USA, 2010. ACM.

[19] Cheng Huang, Minghua Chen, and Jin Li. Pyramid codes: Flexible
schemes to trade space for access efficiency in reliable data storage
systems.Trans. Storage, 9(1):3:1–3:28, March 2013.

[20] P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin. On the locality
of codeword symbols. IEEE Transactions on Information Theory,
58(11):6925–6934, Nov 2012.

[21] G. M. Kamath, N. Prakash, V. Lalitha, and P. V. Kumar. Codeswith local
regeneration and erasure correction.IEEE Transactions on Information
Theory, 60(8):4637–4660, Aug 2014.

[22] L. Pamies-Juarez, H. D. L. Hollmann, and F. Oggier. Locally repairable
codes with multiple repair alternatives. In2013 IEEE International
Symposium on Information Theory, pages 892–896, July 2013.

[23] N. Silberstein, A. S. Rawat, and S. Vishwanath. Error-correcting
regenerating and locally repairable codes via rank-metric codes. IEEE
Transactions on Information Theory, 61(11):5765–5778, Nov 2015.

[24] Itzhak Tamo and Alexander Barg. A family of optimal locallyrecov-
erable codes.IEEE Transactions on Information Theory, 60(8):4661–
4676, 2014.

[25] Q. Gong, J. Wang, D. Wei, J. Wang, and X. Wang. Optimal node
selection for data regeneration in heterogeneous distributed storage
systems. In2015 44th International Conference on Parallel Processing,
pages 390–399, Sept 2015.

[26] Subramanian Muralidhar, Wyatt Lloyd, Sabyasachi Roy, Cory Hill,
Ernest Lin, Weiwen Liu, Satadru Pan, Shiva Shankar, Viswanath Sivaku-
mar, Linpeng Tang, and Sanjeev Kumar. f4: Facebook’s warm blob
storage system. In11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14), pages 383–398, Broomfield, CO,
October 2014. USENIX Association.

[27] I. S. Reed and G. Solomon. Polynomial Codes Over Certain Finite
Fields. Journal of the Society for Industrial and Applied Mathematics,
8(2):300–304, 1960.

[28] Jerasure. http://lab.jerasure.org/jerasure/jerasure. [Online; accessed 10-
5-2017].

[29] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google
file system. InProceedings of the Nineteenth ACM Symposium on
Operating Systems Principles, SOSP ’03, pages 29–43, New York, NY,
USA, 2003. ACM.

[30] Data Replication- HDFS Architecture guide. https://hadoop.apache.org/
docs/r1.2.1/hdfsdesign.html#Data+Replication. [Online; accessed 10-
5-2017].

[31] K. V. Rashmi, Nihar B. Shah, Dikang Gu, Hairong Kuang, Dhruba
Borthakur, and Kannan Ramchandran. A solution to the network
challenges of data recovery in erasure-coded distributed storage systems:
A study on the facebook warehouse cluster. InProceedings of the 5th
USENIX Conference on Hot Topics in Storage and File Systems, Hot-
Storage’13, pages 8–8, Berkeley, CA, USA, 2013. USENIX Association.

[32] M. Nikhil Krishnan, N. Prakash, V. Lalitha, Birenjith Sasidharan, P. Vi-
jay Kumar, Srinivasan Narayanamurthy, Ranjit Kumar, and Siddhartha
Nandi. Evaluation of codes with inherent double replication for hadoop.
In 6th USENIX Workshop on Hot Topics in Storage and File Systems
(HotStorage 14), Philadelphia, PA, June 2014. USENIX Association.

[33] J. Li, S. Yang, X. Wang, and B. Li. Tree-structured data regeneration
in distributed storage systems with regenerating codes. InINFOCOM,
2010 Proceedings IEEE, pages 1–9, March 2010.

[34] A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh. A survey
on network codes for distributed storage.Proceedings of the IEEE,
99(3):476–489, March 2011.

[35] Rack awareness. https://hadoop.apache.org/docs/current/
hadoop-project-dist/hadoop-common/RackAwareness.html. [Online;
accessed 10-5-2017].

APPENDIX

Location Awareness

This section briefly introduces the notion of topology aware-
ness with a custom network layout. The Hadoop software
framework provides a ready-to-use and flexible implemen-
tation of custom network topologies based on bash scripts.
It basically uses the rack awareness idea in a data center
to implement topology awareness in a cluster. In order to
configure any custom geographic topology, some lines should
be added to the Hadoop configuration filecore − site.xml.
The following lines explain the complete process:

<property>
<name>topology.script.file.name</name>
<value>/usr/local/hadoop/conf/rack_topology.sh
</value>
<description>Identifies the network layout.
</description>

</property>

<property>
<name>topology.script.number.args</name>
<value>1</value>
<description>List of IPs to check

</description>
</property>

The bash script used in our experiments is based on the stan-
dard Hadoop topology awareness code, provided at Hadoop
Wiki [35]. We modified the code, based on other community
references, generating the following code for our geo-diverse
cluster:

#!/bin/bash

Adjust/Add the property
"net.topology.script.file.name"
to core-site.xml with the "absolute" path the this
file. ENSURE the file is "executable".

the input is one or more IP values (like 127.0.0.1),
hostnames can be misinterpreted

Supply appropriate rack prefix
RACK_PREFIX=default

To test, supply a hostname as script input:
if [$# -gt 0]; then

CTL_FILE=${CTL_FILE:-"rack_topology.data"}

changed folder to $HADOOP_HOME (system variable)
HADOOP_CONF=${HADOOP_CONF:-"$HADOOP_HOME/conf"}

if [! -f ${HADOOP_CONF}/${CTL_FILE}]; then
echo -n "/$RACK_PREFIX/rack"
exit 0

fi

while [$# -gt 0] ; do
nodeArg=$1
exec< ${HADOOP_CONF}/${CTL_FILE}
result=""
while read line ; do

ar=($line)
if ["${ar[0]}" = "$nodeArg"] ; then
result="${ar[1]}"
echo "$result"
this returns the 2nd column in
the rack_topology.data file

fi
done
shift
if [-z "$result"] ; then

echo -n "/$RACK_PREFIX/rack"
else

echo -n "/$RACK_PREFIX/rack_\$result"
fi

done

else
echo -n "/$RACK_PREFIX/rack"

fi

The above script reads a topology information file
”rack toplology.data” that specifies racks (in our case, lo-
cations) and machines in a key-pair relationship using a
simple format. Given that our clusters were distributed around
Australia, it was natural to organize the different racks using
the different locations available on the NeCTAR cloud.

Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Mohan, LJ;Caneleo, PIS;Parampalli, U;Harwood, A

Title:
Geo-aware erasure coding for high-performance erasure-coded storage clusters

Date:
2018-02

Citation:
Mohan, L. J., Caneleo, P. I. S., Parampalli, U. & Harwood, A. (2018). Geo-aware
erasure coding for high-performance erasure-coded storage clusters. ANNALS OF
TELECOMMUNICATIONS, 73 (1-2), pp.139-152. https://doi.org/10.1007/s12243-017-0623-2.

Persistent Link:
http://hdl.handle.net/11343/283018

http://hdl.handle.net/11343/283018

