Skip to main content

Advertisement

Log in

Outage probability of MIMO cognitive radio networks with energy harvesting and adaptive transmit power

  • Published:
Annals of Telecommunications Aims and scope Submit manuscript

Abstract

This paper derives the outage probability of cognitive radio networks (CRNs) with energy harvesting (EH). The primary nodes have a single antenna, whereas the secondary nodes have multiple antennas. A secondary source S harvests energy from radiofrequency (RF) signal received from primary transmitter PT using nr, S antennas. S also adapts its power so that the interference at primary receiver PR is less than threshold I. The main contribution of the paper is to derive the throughput of multiple input multiple output (MIMO) CRN with RF energy harvesting and adaptive transmit power. We also optimize the secondary throughput by choosing the optimal harvesting duration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Amini MR, Mahdavi M, Omidi MJ (2018) Discrete-time Markov chain analysis of energy efficiency in a CR network regarding primary and secondary traffic with primary user returns. IEEE Access 6:22305–22323

    Article  Google Scholar 

  2. Amini MR, Mahdavi M, Omidi MJ (2018) Maximizing dynamic access energy efficiency in multiuser CRNs with primary user return. IEEE Syst J 2018:1–12

    Google Scholar 

  3. Haykin S (2005) Cognitive radio brain-empowered wireless communications. IEEE J Sel Areas Commun 23:201–220

    Article  Google Scholar 

  4. Ibrahim NS, Sali A, Mohamad MH, Hashim SJ (2015) Outage performance in relay-assisted overlay cognitive radio networks. In: IEEE 12th Malaysia international conference on communications (MICC), p 2015

  5. Zhan J, Liu Y, Tang X, Chen Q (2018) Relaying protocols for buffer-aided energy harvesting wireless cooperative networks. IET Networks 7(3):109–118

    Article  Google Scholar 

  6. Xiuping W, Feng Y, Tian Z (2018) The DF-AF selection relay transmission based on energy harvesting. In: 2018 10th international conference on measuring technology and mechatronics automation (ICMTMA), pp 174–177

  7. Nguyen HT, Nguyen SQ, Hwang W-J (2018) Outage probability of energy harvesting relay systems under unreliable backhaul connections. In: 2018 2nd international conference on recent advances in signal processing, telecommunications and computing (sigtelcom), pp 19–23

  8. Qiu C, Hu Y, Chen Y (2018) Lyapunov optimized cooperative communications with stochastic energy harvesting relay. IEEE Internet of Things Journal 5(2):1323–1333

    Article  Google Scholar 

  9. Sui D, Hu F, Zhou W, Shao M, Chen M (2018) Relay selection for radio frequency energy-harvesting wireless body area network with buffer. IEEE Internet of Things Journal 5(2):1100–1107

    Article  Google Scholar 

  10. Dung LT, Hoang TM, Tan NT, Choi S-G (2018) Analysis of partial relay selection in NOMA systems with RF energy harvesting. In: 2018 2nd international conference on recent advances in signal processing, telecommunications and computing (sigtelcom), pp 13–18

  11. Le QN, Bao VNQ, An B (2018) Full-duplex distributed switch-and-stay energy harvesting selection relaying networks with imperfect CSI: design and outage analysis. Journal of Communications and Networks 20(1):29–46

    Article  Google Scholar 

  12. Gong J, Chen X, Xia M (2018) Transmission optimization for hybrid half/full-duplex relay with energy harvesting. IEEE Trans Wirel Commun 17(5):3046–3058

    Article  Google Scholar 

  13. Tang H, Xie X, Chen J (2018) X-Duplex relay with self-interference signal energy harvesting and its hybrid mode selection method. In: 2018 27th wireless and optical communication conference (WOCC), pp 1–6

  14. Chiu H-C, Huang W-J (2018) Precoding design in two-way cooperative system with energy harvesting relay. In: 2018 27th wireless and optical communication conference (WOCC), pp 1–5

  15. Gurjar DS, Singh U, Upadhyay PK (2018) Energy harvesting in hybrid two-way relaying with direct link under Nakagami-m fading. In: 2018 IEEE wireless communications and networking conference (WCNC), pp 1–6

  16. Singh K, Ku M-L, Lin J-C, Ratnarajah T (2018) Toward optimal power control and transfer for energy harvesting amplify-and-forward relay networks. IEEE Trans Wirel Commun 17(8):4971–4986

    Article  Google Scholar 

  17. Wu Y, Qian LP, Huang L, Shen X (2018) Optimal relay selection and power control for energy-harvesting wireless relay networks. IEEE Transactions on Green Communications and Networking 2(2):471–481

    Article  Google Scholar 

  18. Fan R, Atapattu S, Chen W, Zhang Y, Evans J (2018) Throughput maximization for multi-hop decode-and-forward relay network with wireless energy harvesting. IEEE Access 6:24582–24595

    Article  Google Scholar 

  19. Kalluri T, Peer M, Bohara VA, da Costa DB, Dias US (2018) Cooperative spectrum sharing-based relaying protocols with wireless energy harvesting cognitive user. IET Commun 12(7):838–847

    Article  Google Scholar 

  20. Xie D, Lai X, Lei X, Fan L (2018) Cognitive multiuser energy harvesting decode-and-forward relaying system with direct links. IEEE Access 6:5596–5606

    Article  Google Scholar 

  21. Yan Z, Chen S, Zhang X, Liu H-L (2018) Outage performance analysis of wireless energy harvesting relay-assisted random underlay cognitive networks. IEEE Internet of Things Journal 5(4):2691–2699

    Article  Google Scholar 

  22. Namdar M, Ilhan H (2018) Exact closed-form solution for detection probability in cognitive radio networks with switch-and-examine combining diversity. IEEE Trans Veh Technol 67(9):8215–8222

    Article  Google Scholar 

  23. Babaei M, Aygolu U, Basaran M, Durak-Ata L (2020) BER performance of full-duplex cognitive radio network with nonlinear energy harvesting. IEEE Transactions on Green Communications and Networking 4(2):448–460

    Article  Google Scholar 

  24. Lei H, Xu M, Ansari IS, Pan G, Qaraqe KA, Alouini M-S (2017) On secure underlay MIMO cognitive radio networks with energy harvesting and transmit antenna selection. IEEE Transactions on Green Communications and Networking 1(2):192–203

    Article  Google Scholar 

  25. Gradshteyn IS, Ryzhik IM (1994) Table of integrals series and products, 5th edn. Academic, San Diego, CA

    MATH  Google Scholar 

  26. Proakis JG (2007) Digital communications, 5th edn. MacGraw-Hill, New York

    MATH  Google Scholar 

  27. Xi Y, Burr A, Wei J, Grace D (2011) A general upper bound to evaluate packet error rate over quasi-static fading channels. IEEE Trans Wirel Commun 10(5):1373–1377

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadhir Ben Halima.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We have:

$$ \begin{array}{@{}rcl@{}} P_{\gamma_{SD,i,j}}(x)&=&P(\gamma_{SD,i,j} \leq x)=P(E_{Adaptive}|f_{SD,i,j}|^{2}\\ &\leq& (N_{0}+E_{P_{T}}|f_{P_{T},j}|^{2})x), \end{array} $$
(34)

Let \(Z=N_{0}+E_{P_{T}}|f_{P_{T},j}|^{2}\), then we deduce:

$$ P_{\gamma_{SD,i,j}}(x)={\int}_{N_{0}}^{+\infty}P(E_{Adaptive}|f_{SD,i,j}|^{2}\leq ux)p_{Z}(u)du. $$
(35)

For Rayleigh fading channels, \(E_{P_{T}}|f_{P_{T},j}|^{2}\) follows an exponential distribution with mean \(E_{P_{T}}\lambda _{P_{T},j}\) where \(\lambda _{P_{T},j}=E(|f_{P_{T},j}|^{2})\). We deduce:

$$ \begin{array}{@{}rcl@{}} P_{\gamma_{SD,i,j}}(x)&=&\frac{1}{\lambda_{P_{T},j}E_{P_{T}}}{\int}_{N_{0}}^{+\infty}P(E_{Adaptive}|f_{SD,i,j}|^{2}\\ &\leq& ux)e^{-\frac{(u-N_{0})}{\lambda_{P_{T},j}E_{P_{T}}}}du. \end{array} $$
(36)

The term P(EAdaptive|fSD, i, j|2ux) was derived in Section 3.2 Eq. 22. We need to replace N0 by 1 and x by ux in Eq. 22:

$$ \begin{array}{@{}rcl@{}} &&P(E_{Adaptive}|f_{SD,i,j}|^{2}\leq ux)\\ &=& 1-\frac{2}{\lambda_{SD}^{2}}\sum\limits_{q=0}^{n_{r,S}-1}\frac{(ux)^{q}}{q!\lambda_{P_{T}S}^{2q}\mu^{q}} \left( \frac{ux\lambda_{SD}^{2}}{\mu\lambda^{2}_{P_{T}S}}\right)^{\frac{1-q}{2}}\\ &&K_{1-q}\left( 2\sqrt{\frac{xu}{\lambda_{SD}^{2}\mu \lambda^{2}_{P_{T}S}}}\right)\\ &&+\frac{2}{\lambda_{SD}^{2}}\sum\limits_{q=0}^{n_{r,S}-1}\frac{(ux)^{q}}{q!\lambda_{P_{T}S}^{2q}\mu^{q}} \left[\frac{u^{2}x^{2}}{\mu\lambda_{P_{T}S}^{2}\left( \frac{ux}{\lambda_{SD}^{2}}+\frac{I}{\lambda_{SP_{R}}^{2}}\right)}\right]^{\frac{1-q}{2}} \\ &&K_{1-q}\left( 2\sqrt{\frac{1}{\mu\lambda_{P_{T}S}^{2}}\left( \frac{ux}{\lambda_{SD}^{2}}+\frac{I}{\lambda_{SP_{R}}^{2}}\right)}\right) \end{array} $$
(37)

We use the following result [25] (6.631.3):

$$ \begin{array}{@{}rcl@{}} &&{\int}_{0}^{+\infty}x^{a-0.5}e^{-bx}K_{2c}(2d\sqrt{x})dx\\ &=&\!\frac{\Gamma(a + c + 0.5){\Gamma}(a - c + 0.5)}{2d}e^{\frac{d^{2}}{2b}} b^{-a}W_{-a,c}\left( \frac{d^{2}}{b}\right) \end{array} $$
(38)

where We, d(x) is the Whittaker function [25].

Using Eqs. 3637, and 38, we obtain:

$$ \begin{array}{@{}rcl@{}} P_{\gamma_{SD,i,j}}(x)&=&1-\frac{1}{\lambda_{SD}^{2}\lambda_{P_{T},j}E_{P_{T}}}e^{\frac{N_{0}}{\lambda_{P_{T},j}E_{P_{T}}}} \sum\limits_{q=0}^{n_{r,S}-1}\frac{x^{q}}{\lambda_{P_{T}S}^{2q}\mu^{q}}\\ &&\left( \frac{x\lambda_{SD}^{2}}{\mu \lambda^{2}_{P_{T}S}}\right)^{\frac{1-q}{2}}\frac{1}{2\sqrt{\frac{x}{\lambda_{SD}^{2}\mu\lambda_{P_{T}S}^{2}}}} e^{\frac{x\lambda_{P_{T},j}E_{P_{T}}}{\lambda_{SD}^{2}\mu \lambda_{P_{T}S}}}\\ &&\times (\lambda_{P_{T},j}E_{P_{T}})^{1+q/2}W_{-1-q/2,0.5-q/2}\\ &&\left( \frac{x\lambda_{P_{T},j}E_{P_{T}}}{\lambda_{SD}^{2}\mu \lambda_{P_{T}S}}\right)\\ &&+{\int}_{0}^{N_{0}}\frac{2}{\lambda_{SD}^{2}\lambda_{P_{T},j}E_{P_{T}}}\sum\limits_{q=0}^{n_{r,S}-1}\frac{(ux)^{q}}{q! \lambda_{P_{T}S}^{2q}\mu^{q}}\\ &&\left( \frac{ux\lambda_{SD}^{2}}{\mu\lambda^{2}_{P_{T}S}}\right)^{\frac{1-q}{2}}K_{1-q}\left( 2 \sqrt{\frac{xu}{\lambda_{SD}^{2}\mu\lambda^{2}_{P_{T}S}}}\right)\\ &&e^{-\frac{(u-N_{0})}{\lambda_{P_{T},j}E_{P_{T}}}}du\\ &&+{\int}_{N_{0}}^{+\infty}\frac{2}{\lambda_{SD}^{2}\lambda_{P_{T},j}E_{P_{T}}}e^{\frac{-(u-N_{0})}{\lambda_{P_{T},j}E_{P_{T}}}} \sum\limits_{q=0}^{n_{r,S}-1} \end{array} $$
$$ \begin{array}{@{}rcl@{}} &&\frac{(ux)^{q}}{q!\lambda_{P_{T}S}^{2q}\mu^{q}}\left[\frac{u^{2}x^{2}}{\mu\lambda_{P_{T}S}^{2} (\frac{ux}{\lambda_{SD}^{2}}+\frac{I}{\lambda_{SP_{R}}^{2}})}\right]^{\frac{1-q}{2}}\\ &&K_{1-q}\left( 2\sqrt{\frac{1}{\mu\lambda_{P_{T}S}^{2}} \left( \frac{ux}{\lambda_{SD}^{2}}+\frac{I}{\lambda_{SP_{R}}^{2}}\right)}\right)du, \end{array} $$
(39)

where the last integrals are calculated numerically using MATLAB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halima, N.B., Boujemâa, H. Outage probability of MIMO cognitive radio networks with energy harvesting and adaptive transmit power. Ann. Telecommun. 76, 355–362 (2021). https://doi.org/10.1007/s12243-020-00817-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12243-020-00817-9

Keywords

Navigation