Skip to main content
Log in

Iterative interference alignment with spatial hole sensing in MIMO cognitive radio networks

  • Published:
Annals of Telecommunications Aims and scope Submit manuscript

Abstract

This paper investigates the performance of iterative interference alignment (IA) with spatial hole sensing in K-user multi-input multi-output (MIMO) cognitive radio (CR) networks. In the considered network, there are some unused degrees of freedom (DoF) or equivalently spatial holes in the primary network (PN) where the secondary network (SN) users communicate without causing harmful interference to the PN receivers. First, the generalized likelihood ratio test method is utilized to determine the availability of the unused DoFs; then, it is decided whether individual primary streams are present in the PN. With the aid of precoding and suppression matrices generated by an iterative IA approach, the interferences in the PN that are caused by the SN are aligned, and due to the secondary transmission, interference leakage on the kth primary receiver decreases below 10− 6. The effects of the detection threshold values and the number of transmitter and receiver antennas are investigated in terms of detection and false alarm probability. Finally, the amplify-and-forward (AF) relaying scheme in the SN is evaluated and the impact of the relaying architecture on the system performance is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chaudhari S, Cabric D (2019) Power control and frequency band selection policies for underlay MIMO cognitive radio. IEEE Trans on Cognitive Commun and Netw 5(2):304–317

    Article  Google Scholar 

  2. Li Y, Kudathanthirige D, Baduge GAA (2018) Massive MIMO relay networks with underlay spectrum sharing. IEEE Trans on Cognitive Commun and Netw 4(4):677–691

    Article  Google Scholar 

  3. Al-Badarneh YH, Georghiades CN, Alouini MS (2019) Asymptotic performance analysis of generalized user selection for interference-limited multiuser secondary networks. IEEE Trans on Cognitive Commun and Netw 5(1):82–92

    Article  Google Scholar 

  4. Zhang C, Jiang C, Kuang L, Jin J, He Y, Han Z (2019) Spatial spectrum sharing for satellite and terrestrial communication networks. IEEE Trans Aerosp Electron Syst 55(3):1075–1089

    Article  Google Scholar 

  5. Men H, Zhao N, Jin M, Kim JM (2015) Optimal transceiver design for interference alignment based cognitive radio networks. IEEE Commun Lett 19(8):1442–1445

    Article  Google Scholar 

  6. Haykin S (2005) Cognitive radio: brain-empowered wireless communications. IEEE J Sel Areas Commun 23(2):201–220

    Article  Google Scholar 

  7. Mitola J, Maguire GQ (1999) Cognitive radio: making software radios more personal. IEEE Personal Commun 6(4):13–18

    Article  Google Scholar 

  8. Biglieri E, Goldsmith AJ, Greenstein LJ, Mandayam NB, Poor HV (2013) Principles of cognitive radio. Cambridge University Press, Cambridge

    Google Scholar 

  9. El Tanab M, Hamouda W (2016) Resource allocation for underlay cognitive radio networks: A survey. IEEE Commun Surv Tutorials 19(2):1249–1276

    Article  Google Scholar 

  10. Liang W, Ng SX, Hanzo L (2017) Cooperative overlay spectrum access in cognitive radio networks. IEEE Commun Surv Tutorials 19(3):1924–1944

    Article  Google Scholar 

  11. Ali A, Hamouda W (2016) Advances on spectrum sensing for cognitive radio networks: Theory and applications. IEEE Commun Surv Tutorials 19(2):1277–1304

    Article  Google Scholar 

  12. Zhao N, Yu FR, Jin M, Yan Q, Leung VC (2016) Interference alignment and its applications: A survey, research issues, and challenges. IEEE Commun Surv Tutorials 18(3):1779–1803

    Article  Google Scholar 

  13. Razaviyayn M, Sanjabi M, Luo ZQ (2012) Linear transceiver design for interference alignment: Complexity and computation. IEEE Trans Inf Theory 58(5):2896–2910

    Article  MathSciNet  Google Scholar 

  14. Liu T, Yang C (2013) On the feasibility of linear interference alignment for MIMO interference broadcast channels with constant coefficients. IEEE Trans Sig Process 61(9):2178–2191

    Article  MathSciNet  Google Scholar 

  15. Gonzalez O, Beltran C, Santamaria I (2014) A feasibility test for linear interference alignment in MIMO channels with constant coefficients. IEEE Trans Inf Theory 60(3):1840–1856

    Article  MathSciNet  Google Scholar 

  16. Razaviyayn M, Lyubeznik G, Luo ZQ (2011) On the degrees of freedom achievable through interference alignment in a MIMO interference channel. IEEE Trans Sig Process 60(2):812–821

    Article  MathSciNet  Google Scholar 

  17. Zhao N, Yu FR, Sun H, Li M (2015) Adaptive power allocation schemes for spectrum sharing in interference-alignment-based cognitive radio networks. IEEE Trans Veh Tech 65(5):3700– 3714

    Article  Google Scholar 

  18. Koo B, Park D (2012) Interference alignment with cooperative primary receiver in cognitive networks. IEEE Commun Lett 16(7):1072–1075

    Article  Google Scholar 

  19. Gomadam K, Cadambe VR, Jafar SA (2011) A distributed numerical approach to interference alignment and applications to wireless interference networks. IEEE Trans Inf Theory 57(6):3309–3322

    Article  MathSciNet  Google Scholar 

  20. Arzykulov S, Nauryzbayev G, Tsiftsis TA, Abdallah M (2018) On the performance of wireless powered cognitive relay network with interference alignment. IEEE Trans on Commun 66(9):3825–3836

    Article  Google Scholar 

  21. Mosleh S, Abouei J, Aghabozorgi MR (2014) Distributed opportunistic interference alignment using threshold-based beamforming in MIMO overlay cognitive radio. IEEE Trans Veh Tech 63(8):3783–3793

    Article  Google Scholar 

  22. Hasani-Baferani M, Abouei J, Zeinalpour-Yazdi Z (2016) Interference alignment in overlay cognitive radio femtocell networks. IET Commun 10(11):1401–1410

    Article  Google Scholar 

  23. Zhang R, Lim TJ, Liang YC, Zeng Y (2010) Multi-antenna based spectrum sensing for cognitive radios: A GLRT approach. IEEE Trans Commun 58(1):84–88

    Article  Google Scholar 

  24. Font-Segura J, Wang X (2010) GLRT-based spectrum sensing for cognitive radio with prior information. IEEE Trans Commun 58(7):2137–2146

    Article  Google Scholar 

  25. Alizadeh A, Bahrami HR, Maleki M, Sastry S (2014) Spatial sensing and cognitive radio communication in the presence of a k-user interference primary network. IEEE J Sel Areas Commun 33(5):741–754

    Article  Google Scholar 

  26. Sharma SK, Chatzinotas S, Ottersten B (2013) Interference alignment for spectral coexistence of heterogeneous networks. EURASIP J Wireless Commun Netw 2013(46):1–14

    Google Scholar 

  27. Shin W, Lee N, Yang H, Lee J (2016) Relay-aided successive aligned interference cancellation for wireless x networks with full-duplex relays. IEEE Trans Veh Tech 66(1):421–432

    Google Scholar 

  28. Jin DS, No JS, Shin DJ (2014) New interference alignment schemes with full and half-duplex relays for the quasi-static X channel. IET Commun 8(3):351–359

    Article  Google Scholar 

  29. Tang J, Lambotharan S, Pomeroy S (2013) Interference cancellation and alignment techniques for multiple-input and multiple-output cognitive relay networks. IET Sig Process 7(3):188–200

    Article  MathSciNet  Google Scholar 

  30. Chen Y, Liu C, Fu Y, Song Y, Qian M (2020) Optimal transceiver design for SWIPT in interference alignment network. Adv Electr Comput Eng 20(2):19–26

    Article  Google Scholar 

  31. Jeffrey A, Zwillinger D (2007) Table of integrals, series, and products. Elsevier, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Namdar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Namdar, M., Basgumus, A., Aldirmaz-Colak, S. et al. Iterative interference alignment with spatial hole sensing in MIMO cognitive radio networks. Ann. Telecommun. 77, 177–185 (2022). https://doi.org/10.1007/s12243-021-00869-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12243-021-00869-5

Keywords

Navigation