Skip to main content

Advertisement

Sliding window symbol-pair constrained codes for energy harvesting

  • Published:
Annals of Telecommunications Aims and scope Submit manuscript

Abstract

The binary symbol-pair constrained codes that can enable simultaneous transfer of information and energy is the topic of interest in this paper. The construction and properties of such binary symbol-pair code using the sliding window constraint are discussed in this paper. The sliding window constraint ensures the presence of at least t weighted symbols within any prescribed window of l consecutive symbol-pairs. The information capacity of (l,t)-constrained sequences has been obtained and analyzed. This paper provides the block code construction of (l,t) symbol-pair constrained codes of length n without using a n-step finite-state machine. The information capacity obtained in this paper is better than the information capacity of (l,t)-constrained codes in Schouhamer Immink and Kui (IEEE Commun Lett 24(9):1890–1893, 2020) [16].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Adler R, Coppersmith D, Hassner M (1983) Algorithms for sliding block codes–An application of symbolic dynamics to information theory. IEEE Trans Inf Theory 29(1):5–22

    Article  MATH  Google Scholar 

  2. Adler R, Coppersmith D, Hassner M (1983) Algorithms for sliding block codes—An application of symbolic dynamics to information theory. IEEE Trans Inf Theory IT-29(1):5–22

    Article  MATH  Google Scholar 

  3. Cao C, Fair I (2019) Minimal sets for capacity-approaching variable-length constrained sequence codes. IEEE Trans Commun 67(2):890–902

    Article  Google Scholar 

  4. Cao C, Fair I (2019) Construction of multi-state capacity-approaching variable-length constrained sequence codes with state-independent decoding. IEEE Access 7:54746–54759

    Article  Google Scholar 

  5. Cassuto Y, Blaum M (2011) Codes for symbol-pair read channels. IEEE Trans Inf Theory 57(12):8011–8020

    Article  MATH  Google Scholar 

  6. Flajolet P, Sedgewick R (2009) Analytic combinatorics. Cambridge Univ Press, Cambridge, U.K.

    Book  MATH  Google Scholar 

  7. Franaszek PA (1968) Sequence-state encoding for digital transmission. Bell Syst Tech J 47:143–157

    Article  Google Scholar 

  8. Franaszek PA (1968) Sequence-state encoding for digital transmission. Bell Syst Tech J 47:143–157

    Article  Google Scholar 

  9. Freiman CV, Wyner AD (1964) Optimum block codes for noiseless input restricted channels. Inf Control 7(3):398–415

    Article  MATH  Google Scholar 

  10. Guibas LJ, Odlyzko AM (1981) String overlaps, pattern matching, and nontransitive games. J Combinat Theory A 30(2):183–208

    Article  MATH  Google Scholar 

  11. Hopcroft JE, Motwani R (2013) Introduction to automata theory, languages, and computation. Pearson, London U.K.

    MATH  Google Scholar 

  12. Immink KAS (1990) Run length-limited sequences. Proc IEEE 78(11):1745–1759

    Article  Google Scholar 

  13. Marcus BH, Siegel PH, Wolf JK (1992) Finite-state modulation codes for data storage. IEEE J Sel Areas Commun 10(1):5–37

    Article  Google Scholar 

  14. Popovski P, Fouladgar AM, Simeone O (2013) Interactive joint transfer of energy and information. IEEE Trans Commun 61(5):2086–2097

    Article  Google Scholar 

  15. Rosnes E, Barbero ÁI, Ytrehus Ø (2012) Coding for inductively coupled channels. IEEE Trans Inf Theory 58(8):5418–5436

    Article  MATH  Google Scholar 

  16. Schouhamer Immink KE, Kui C (2020) Properties and constructions of energy-harvesting sliding-window constrained codes. IEEE Commun Lett 24(9):1890–1893

    Article  Google Scholar 

  17. Schouhamer Immink KE, Kui C (2020) Block codes for energy-harvesting sliding-window constrained channels. IEEE Commun Lett 24(11):2383–2386

    Article  Google Scholar 

  18. Schouhamer Immink KE, Siegel PH, Wolf JK (1998) Codes for digital recorders. IEEE Trans Inf Theory 44(6):2260–2299

    Article  MATH  Google Scholar 

  19. Shannon CE (1948) A mathematical theory of communication. Bell Syst, Tech J 27(3):379–423

    Article  MATH  Google Scholar 

  20. Stanley RP (1997) Enumerative combinatorics Volume 1 (Cambridge Studies in Advanced Mathematics Book 49). Cambridge Univ. Press, Cambridge, U.K.

    Google Scholar 

  21. Tandon A, Motani M, Varshney LR (2016) Subblock-constrained codes for real-time simultaneous energy and information transfer. IEEE Trans Inf Theory 62(7):4212–4227

    Article  MATH  Google Scholar 

  22. Tandon A, Kiah HM, Motani M (2018) Bounds on the size and asymptotic rate of subblock-constrained codes. IEEE Trans Inf Theory 64(10):6604–6619

    Article  MATH  Google Scholar 

  23. Tandon A, Motani M, Varshney LR (2019) Are run-length limited codes suitable for simultaneous energy and information transfer. IEEE Trans Green Commun Netw 3(4):988–996

    Article  Google Scholar 

  24. Cassuto Y, Blaum M (2010) Codes for symbol-pair read channels. In: Proc. IEEE Int. Symp. Inf. Theory, Austin, TX, USA, pp 988–992

  25. Wu T-Y, Tandon A, Varshney LR, Motani M (2017) Skip-sliding window codes. arXiv:1711.09494

  26. Wu T-Y, Tandon A, Motani M, Varshney LR (2019) On the outage constrained rate of skip-sliding window codes. In: Proc. IEEE Inf. Theory Workshop (ITW), Visby, Sweden, pp 1–5

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhay Kumar Singh.

Ethics declarations

Conflict of Interest

Not applicable

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Bhoi, S.S., Gupta, R. et al. Sliding window symbol-pair constrained codes for energy harvesting. Ann. Telecommun. 78, 71–77 (2023). https://doi.org/10.1007/s12243-022-00923-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12243-022-00923-w

Keywords

Mathematics Subject Classification (2010)