Skip to main content
Log in

Robust adaptive beamforming algorithm for coherent signals based on virtual array

  • Published:
Annals of Telecommunications Aims and scope Submit manuscript

Abstract

Aiming at the problem of beamforming performance degradation under the coherent signals model, this paper proposes an adaptive beamforming algorithm based on the virtual array. Compared with previous work, the creative construction of virtual arrays in this paper allows the algorithm to ensure strong coherent signal processing and superior output performance with no degradation in coherence capability. The proposed algorithm firstly constructs a virtual array symmetric to the physical array to form a virtual antenna array model; secondly, a full-rank covariance matrix is obtained by matrix reconstruction; then, the direction vector and power of the signals are estimated; finally, the estimated parameters are used to reconstruct the interference plus noise covariance matrix (INCM) and calculate the weight vector. Simulation analysis verifies the superiority of the algorithm and the validity of theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang Y, Li W, Chen Q, Jin C (2016) A robust adaptive beamformer based on desired signal covariance matrix estimation, pp 1–4

  2. Ruan H, de Lamare R (2015) Low-complexity robust adaptive beamforming algorithms exploiting shrinkage for mismatch estimation, pp 1–5

  3. Zhang K, Shen C, Li H, Li Z, Wang H, Chen X, Chen J (2020) Direction of arrival estimation and robust adaptive beamforming with unfolded augmented coprime array. IEEE Access 8:22314–22323

    Article  Google Scholar 

  4. Zhou C, Zheng H, Yujie GU, Wang Y, Shi Z (2019) Research progress on coprime array signal processing: Direction-of arrival estimation and adaptive beamforming. J Radars 8(5):558–577

    Google Scholar 

  5. Du Y, Xu H, Cui W, Jian C, Zhang J (2022) Adaptive beamforming algorithm for coprime array based on interference and noise covariance matrix reconstruction. IET Radar Sonar Navig 16(4):668-677

    Article  Google Scholar 

  6. Yuxi Du YWBBFM Weijia Cui (2021) Subspace based adaptive beamforming algorithm with interference plus noise covariance matrix reconstruction. Math Probl Eng 2021:1–11

    Google Scholar 

  7. Yang J, Tu Y, Lu J, Yang Z (2022) Robust adaptive beamforming based on subspace decomposition, steering vector estimation and correction. IEEE Sensors J 22(12):12260–12268

    Article  Google Scholar 

  8. Yang H, Ye Z (2023) Robust adaptive beamforming based on covariance matrix reconstruction via steering vector estimation. IEEE Sensors J 23(3):2932–2939

    Article  Google Scholar 

  9. Gao S, Wong K (1995) Adaptive co-channel interference suppression in mobile communications satellite systems, vol 1. pp 86–90

  10. Zhong W, Wan Q, Shang Z (2010) Robust adaptive beamforming under quadratic constraint 2:V2–270–V2–274

  11. Capon J (1969) High-resolution frequency-wavenumber spectrum analysis. Proc IEEE 57(8):1408–1418

    Google Scholar 

  12. Chen W, Zhao Y, Gao J (2013) Improved capon beamforming algorithm by using inverse covariance matrix calculation, pp 1–6

  13. Liu J, Liu W, Liu H, Chen B, Xia XG, Dai F (2016) Average SINR calculation of a persymmetric sample matrix inversion beamformer. IEEE Trans Signal Process 64(8):2135–2145

    Article  MathSciNet  MATH  Google Scholar 

  14. Cox H, Zeskind R, Owen M (1987) Robust adaptive beamforming. IEEE Trans Acoust Speech Signal Process 35(10):1365-1376

    Article  Google Scholar 

  15. Carlson BD (1988) Covariance matrix estimation errors and diagonal loading in adaptive arrays. IEEE Trans Aerosp Electron Syst 24(4):397–401

    Article  Google Scholar 

  16. Elnashar A, Elnoubi SM, El-Mikati HA (2006) Further study on robust adaptive beamforming with optimum diagonal loading. IEEE Trans Antennas Propag 54(12):3647–3658

    Article  Google Scholar 

  17. Du L, Li J, Stoica P (2010) Fully automatic computation of diagonal loading levels for robust adaptive beamforming. IEEE Trans Aerosp Electron Syst 46(1):449–458

    Article  Google Scholar 

  18. Stoica P, Wang Z, Jian L (2006) Robust capon beamforming. J Signal Process Lett IEEE 10(6):172–175

    Article  Google Scholar 

  19. Lorenz RG, Boyd SP (2005) Robust minimum variance beamforming. IEEE Trans Signal Process 53(5):1684–1696

    Article  MathSciNet  MATH  Google Scholar 

  20. Gu Y, Leshem A (2012) Robust adaptive beamforming based on interference covariance matrix reconstruction and steering vector estimation. IEEE Trans Signal Process 60(7):3881–3885

    Article  MathSciNet  MATH  Google Scholar 

  21. Gu Y, Goodman NA, Hong S, Li Y (2014) Robust adaptive beamforming based on interference covariance matrix sparse reconstruction - science direct. Signal Process 96(5):375–381

  22. Lu Z, Li Y, Gao M, Zhang Y (2013) Interference covariance matrix reconstruction via steering vectors estimation for robust adaptive beamforming. Electron Lett 49(22):1373–1374

    Article  Google Scholar 

  23. Huang L, Zhang J, Xu X, Ye Z (2015) Robust adaptive beamforming with a novel interference-plus-noise covariance matrix reconstruction method. IEEE Trans Signal Process 63(7):1643–1650

    Article  MathSciNet  MATH  Google Scholar 

  24. Huang Y, Fu H, Vorobyov SA, Luo ZQ (2023) Robust adaptive beamforming via worst-case SINR maximization with nonconvex uncertainty sets. IEEE Trans Signal Process 71:218–232

    Article  MathSciNet  Google Scholar 

  25. Evans J (1981) High resolution angular spectrum estimation technique for terrain scattering analysis and angle of arrival estimation. In: 1st IEEE ASSP Workshop Spectral Estimat., McMaster Univ., Hamilton, Ont., Canada, 1981, pp 134–139

  26. Pillai SU, Kwon BH (1989) Forward/backward spatial smoothing techniques for coherent signal identification. IEEE Trans Acoust Speech Signal Process 37(1):8–15

    Article  MATH  Google Scholar 

  27. Evans JE, Sun D, Johnson J (1982) Application of advanced signal processing techniques to angle of arrival estimation in atc navigation and surveillance systems. Tech. rep, Massachusetts Inst of Tech Lexington Lincoln Lab

    Google Scholar 

  28. Li P, Sun J, Yu B (1996) Two-dimensional spatial-spectrum estimation of coherent signals without spatial smoothing and eigendecomposition. IEE Proc Radar Sonar Navig 143(5):295–299

    Article  Google Scholar 

  29. Choi YH (2004) Improved adaptive nulling of coherent interference without spatial smoothing. IEEE Trans Signal Process 52(12):3464–3469

    Article  MathSciNet  MATH  Google Scholar 

  30. Han FM, Zhang XD (2005) An esprit-like algorithm for coherent DOA estimation. IEEE Antennas Wirel Propag Lett 4:443–446

    Article  Google Scholar 

  31. Zhang X, Yu J, Feng G, Xu D (2008) Blind direction of arrival estimation of coherent sources using multi-invariance property. Prog Electromagn Res 88:181–195

    Article  Google Scholar 

  32. Lei Z, Wei L (2012) Robust beamforming for coherent signals based on the spatial-smoothing technique. Signal Process 92(11):2747–2758

    Article  Google Scholar 

  33. Wang C, Tang J, Wu Y (2016) Eigenspace-based beamforming technique for multipath coherent signals reception. Signal Process 128:150–154

    Article  Google Scholar 

  34. Guo Y, Zhang L, Zhang J, Guo P, Chen Z (2022) A coherent signal beamforming technique based on sub-array cross correlation. Digit Signal Process 121(103):291

    Google Scholar 

  35. Zhu X, Xu X, Ye Z (2020) Robust adaptive beamforming via subspace for interference covariance matrix reconstruction. Signal Process 167(Feb.):107289.1–107289.10

  36. Schmidt R, Schmidt RO (1986) Multiple emitter location and signal parameter estimation. IEEE Trans Antennas Propag 34(3):276-280

    Article  MathSciNet  Google Scholar 

  37. Zhang W, Han Y, Jin M, Li XS (2019) An improved esprit-like algorithm for coherent signals doa estimation. IEEE Commun Lett 24(2):339–343

    Article  Google Scholar 

  38. Zheng Z, Yang T, Wang WQ, So HC (2019) Robust adaptive beamforming via simplified interference power estimation. IEEE Trans Aerosp Electron Syst 55:3139–3152

Download references

Funding

This work was supported in part by Grant No. 62171468 from the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxi Du.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Y., Cui, W., Mei, F. et al. Robust adaptive beamforming algorithm for coherent signals based on virtual array. Ann. Telecommun. 78, 641–651 (2023). https://doi.org/10.1007/s12243-023-00966-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12243-023-00966-7

Keywords

Navigation