Skip to main content

Advertisement

Log in

An efficient evolutionary multi-objective framework for MEMS design optimisation: validation, comparison and analysis

  • Regular Research Paper
  • Published:
Memetic Computing Aims and scope Submit manuscript

Abstract

The application of multi objective evolutionary algorithms (MOEA) in the design optimisation of microelectromechanical systems (MEMS) is of particular interest in this research. MOEA is a class of soft computing techniques of biologically inspired stochastic algorithms, which have proved to outperform their conventional counterparts in many design optimisation tasks. MEMS designers can utilise a variety of multi-disciplinary design tools that explore a complex design search space, however, still follow the traditional trial and error approaches. The paper proposes a novel framework, which couples both modelling and analysis tools to the most referenced MOEAs (NSGA-II and MOGA-II). The framework is validated and evaluated through a number of case studies of increasing complexity. The research presented in this paper unprecedentedly attempts to compare the performances of the mentioned algorithms in the application domain. The comparative study shows significant insights into the behaviour of both of the algorithms in the design optimisation of MEMS. The paper provides extended discussions and analysis of the results showing, overall, that MOGA-II outperforms NSGA-II, for the selected case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fedder GK, Mukherjee T (1996) Physical design for surface-micromachined MEMS. In: Proceedings of the 5th ACM/SIGDA physical design workshop, Reston, VA, USA, April 15–17, pp 53–60

  2. Esashi M, Sugiyama S, Ikeda K, Wang Y, Myashita H (1998) Vacuum-sealed silicon micromachined pressure sensors. Proc IEEE 86(8): 1627–1639

    Article  Google Scholar 

  3. Zhang Z-H, Zhang Y-H, Liu L-T, Ren T-L (2008) A novel MEMS pressure sensor with MOSFET on chip. IEEE Sens:1564–1567

  4. Ongkodjojo A, Tay FEH (2002) Global optimization and design for microelectromechanical systems devices based on simulated annealing. J Micromech Microeng 12: 878–897

    Article  Google Scholar 

  5. Isoda T, Ishida Y (2006) Seperation of cells using fluidic MEMS device and a quantitative analysis of cell movement. Trans Inst Electr Eng Jpn 126(11): 583–589

    Google Scholar 

  6. Neeves KB, Diamond S (2008) A membrane-based microfliudic device for controlling the flux of platelet agonists into flowing blood. Lab Chip 8(5): 701–709

    Article  Google Scholar 

  7. Hostis Fl, Green NG, Morgan H, Akaisi M (2006) Solid state AC electroosmosis micro pump on a chip. In: International conference on nanoscience and nanotechnology, 2006 ICONN, Brisbane, Qld, pp 282–285

  8. Ahn CH, Choi J-W, Beaucage G, Nevin JH, Lee J-B, Puntambekar A, Lee JY (2004) Disposable smart cab on a chip for point-of-care clinical diagnositcs. Proc IEEE 92(1): 154–173

    Article  Google Scholar 

  9. Benkhelifa E, Farnsworth M, Bandi G, Tiwari A, Zhu M, Ramsden J. Design and optimisation of microelectromechanical systems: a review of the state-of-the-art. In: International journal of design engineering, Special issue “Evolutionary Computing for Engineering Design”, vol 3, No 1, pp 41–76

  10. Hao Y, Zhang D (2004) Silicon-based MEMS process and standardization. In: Proceedings of the 7th international conference on solid-state and integrated circuits technology, vol 3, pp 1835–1838

  11. Fedder G (1999) Structured Design of Integrated MEMS. Micro Electro Mechanical Systems, 1999. In: MEMS ’99, twelfth IEEE international conference, Orlando, FL, USA, pp 1–8

  12. Senturia SD (2001) Microsystem design. Kluwer Academic Publishers, Dordrecht, ISBN-0-7923-7246-8

  13. Benkhelifa E, Farnsworth M, Tiwari A, Zhu M (2009) An Integrated Framework for MEMS Design Optimisation using modeFrontier. In: EnginSoft international conference 2009, CAE technologies for industry and ANSYS Italian conference

  14. Farnsworth M, Benkhelifa E, Tiwari A, Zhu M (2010) A novel approach to multi-level evolutionary design optimization of a MEMS device. Evolvable systems: from biology to hardware, LNCS 6274:322–334

  15. Haronain D (1995) Maximizing microelectromechanical sensor and actuator sensitivity by optimizing geometry. Sens Actuators A 50: 223–236

    Article  Google Scholar 

  16. Iyer S, Mukherjee T, Fedder G (1997) Automated optimal synthesis of mi-croresonators. In: Solid-state sensors and actuators, Chicago, pp 12–19

  17. Li H, Antonsson EK (1999) Mask-layout synthesis through an evolutionary algorithm, In: MSM’99, modeling and simulation of microsystems, semiconductors, sensors and actuators, San Juan, Puerto Rico

  18. Ma L, Antonsson EK (2001) Robust mask-layout synthesis for MEMS. In: Technical proceedings of the 2001 international conference on modeling and simulation of microsystems, Chapter 5: optimization, pp 128–131

  19. Kamalian R, Zhou N, Agogino AM (2002) A Comparison of MEMS Synthesis Techniques, In: Proceedings of the 1st Pacific Rim workshop on transducers and micro/nano technologies, July 22–24, 2002, Xiamen, China, pp 239–242

  20. Zhou N, Agogino AM, Pister KS (2002) Automated Design Synthesis for Micro-Electro-Mechanical Systems (MEMS). In: Proceedings of the ASME design automation conference, ASME CD ROM, Sept. 29–Oct. 2 2002, Montreal, Canada

  21. Kamalian RH, Takagi H, Agogino AM (2004) Optimized design of MEMS by evolutionary multi-objective optimization with interactive evolutionary computation. In: Proceedings of GECCO 2004 (genetic and evolutionary computation conference; June 26–30, Seattle, Washington), CD ROM

  22. Zhang Y, Kamalian R, Agogino AM, Séquin CH (2006) Design synthesis of microelectromechanical systems using genetic algorithms with component-based genotype representation. In: Proc. of GECCO 2006 (genetic and evolutionary computation conference). Seattle, July 8–12, 2006. ISBN 1-59593 187-2. 1:731–738

  23. Zhou N, Zhu B, Agogino AM, Pister K (2001) Evolutionary synthesis of MEMS (microelectronic mechanical systems) design. In: Proceedings of ANNIE 2001, IEEE Neural Networks Council and Smart Engineering Systems Laboratory, Nov. 4-7, 2001, Marriott Pavilion Hotel, St. Louis, Missouri, ASME Press, New Jersey, vol 11, pp 197–202

  24. Clark JV, Zhou N, Pister KSJ (1998) MEMS Simulation Using SUGAR v0.5, Solid-State Sensor and Actuator Workshop, pp 191–196

  25. Lohn JD, Kraus WF, Hornby GS (2007) Automated design of a MEMS resonator. In: Proceedings of the congress on evolutionary computation. pp 3486–3491

  26. Fan Z, Seo K, Hu J, Rosenberg RC, Goodman ED (2003) System Level Synthesis of MEMS via Genetic Programming and Bond Graphs Genetic and Evolutonary Computation GECCO. Springer, Berlin, pp 205–217

  27. Fan Z, Wang J, Achiche S, Goodman E, Rosenberg R (2008) Structured synthesis of MEMS using evolutionary approaches. Appl Soft Comput 8: 579–589

    Article  Google Scholar 

  28. Poles S (2003) MOGA-II an improved multi-objective genetic algorithm. Technical report 2003-006, Esteco, Trieste

  29. Deb K, Agrawal S, Pratap A, Meyarivan T (2000) A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Proceedings of the 6th international conference parallel problem solving from nature (PPSN-VI), pp 849–858

  30. Matlab-Simulink, Mathworks (2010). http://www.mathworks.com/. Accessed 11/2010

  31. Mukherjee T, Fedder G, Ramaswamy D, White J (2000) Emerging Simulation Approaches For Micromachined Devices, Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on. pp.1572-1589

  32. Vandemeer J, Kranz M, Fedder G (1998) Hierarchical Representation and Simulation of Micromachined Inertial Sensors. Modeling and Simulation of Microsystems, Santa Clara, CA

  33. Han JS, Kwak BM (2001) Robust optimal design of a vibratory microgyroscopeconsidering fabrication errors. J Micromech Microeng 11: 662–671

    Article  Google Scholar 

  34. Krassow H, Zabala M, Gotz A, Cane C (1998) MEMS design optimization using coupledFEM and electrical circuit simulation. In: Technical proceedings of the 1998 international conference on modelling and simulation of microsystems, pp 329–333

  35. Ye W, Mukherjee S, MacDonald NC (1998) Optimal shape design of an electrostaticComb Drive in microelectrom echanical systems. J Microelectromechanical Syst 7: 16–26

    Article  Google Scholar 

  36. Gogoi B, Yeun R, Mastrangelo CH (1994) The automatic synthesis of planar fabricationprocess flows for surface micromachined devices. In: Proceedings IEEE micro electro mechanical systems workshop, Oiso, Japan, pp 153–157

  37. Gibson D, Purdy C, Hare A, Beyette F Jr (1999) Design automation of MEMS systemsusing behavioral modeling. In: Proceedings of the IEEE great lakes symposium on VLSI, pp 266–269

  38. Nagel LW, Pederson DO (1973) Simulation Program with Integrated Circuit Emphasis(SPICE), Memorandum No. ERL-M382, April, University of California, Berkeley

  39. Getreu IE (1989) Behavioral modelling of analog blocks using the SABER simulator. In: Proceedings of the 32nd Midwest Symposium on, circuits and systems, vol 2. Champaign, pp 977–980. http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=102017

  40. MathCAD (2010) http://www.ptc.com/products/mathcad/. Accessed 11/2010

  41. Swart NR, Bart SF, Zaman MH, Mariappan M, Gilbert JR, Murphy D (1998) AutoMM: automatic generation of dynamic macromodels for MEMSdevices, In: IEEE proceedings of the eleventh annual international workshop onmicroelectromechanicalsystems, pp 178–183

  42. ANSYS (2010). http://www.ansys.com. Accessed 11/2010

  43. COMSOL (2010). http://www.COMSOL.com. Accessed 11/2010

  44. ABAQUS Alliances: Coventor (2010). http://www.hks.com/alliances/alliances_coventor.html. Accessed 11/2010

  45. ALGOR (2010). http://www.algor.com/. Accessed 11/2010

  46. Koppelman GK (1989) Oyster: a three-dimensional structural simulator formicroelectromechanical design. Sensors Actuators 20:179–185

    Google Scholar 

  47. SolidWorks (2010). http://www.solidworks.com. Accessed 11/2010

  48. Buser RA, de Rooij NF (1991) ASEP: aCAD program for silicon anisotropic etching (micromechanical structure), Sensors and Actuators, pp 71–78

  49. IntelliSuite (1995). http://www.intellisensesoftware.com. Accessed 11/2010

  50. MEMSPro (1997) softMEMS. http://www.softmems.com/. Accessed 11/2010

  51. Senturia SD, Harris RM, Johnson BP, Kim S, Nabors K, Shulman MA, White JK (1992) A computer-aided design system for microelectromechanical systems (MEMCAD). IEEE J MicroElectroMech Syst 1: 3–13

    Article  Google Scholar 

  52. Architect (2008). http://www.coventor.com/mems/architect/index.html. Accessed 11/2010

  53. Zhou N, Clark JV, Pister KSJ. Nodal Anlaysis for MEMS Design Using SUGAR v0.5. In: Technical proceedings of the 1998 international conference on modeling and simulation of microsystems. pp 308–313

  54. Nagel LW (1970) Computer analysis of nonlinear circuits excluding radiation, Ph.D dissertation, UC Berkeley

  55. Li H, Antonsson EK (1998)Evolutionary techniques in MEMS synthesis. In: Proceedings DETC’98, 1998 ASME design engineering technical conferences, Atlanta, GA

  56. Kamalian RH, Agogino AM, Takagi H (2004a) The role of constraints and humaninteraction in evolving MEMS designs: microresonator case study. In: Proceedings of the ASME design automation conference, design automation track, Paper DETC2004-57462, CDROM, ISBN I710CD

  57. Kamalian R (2004) Evolutionary synthesis of MEMS devices PhD thesis, University of California at Berkeley, California, United States of America.

  58. Fan Z, Goodman ED, Wang J, Rosenberg RC, Seo K, Hu J (2004) Hierarchical evolutionary synthesis of MEMS. In: Proceedings of the congress on evolutionary computation (CEC 2004) 2:2320–2327

  59. Kamalian R, Zhang Y, Agogino AM (2005) Microfabrication and characterizationof evolutionary MEMS resonators. In: Proceedings of the symposium of micro- and nano-mechatronics for information-based society, IEEE robotics and automation society, November, ISBN 0-7803-9482-8, pp 109–114

  60. Fan Z, Wang J, Goodman ED (2005) An evolutionary approach for robust layout synthesis of MEMS. In: Proceedings of 2005 IEEE/ASME international conference on advanced intelligent mechatronics, pp 1186–1191

  61. Cobb C, Zhang Y, Agogino AM (2006) An integrated MEMS design synthesis architecture using case-based reasoning and multi-objective genetic algorithms. In: Proceedings of 2006 SPIE smart materials, nano- and micro-smart systems, SPIE, vol. 6414, No. 641419, ISBN: 9780819465221, Invited paper

  62. Zhang Y (2006) MEMS design synthesis based on hybrid evolutionary computation, PhD thesis, Department of Civil and Environmental Engineering, University of California at Berkeley, USA

  63. Hornby GS, Kraus WF, Lohn JD (2008) Evolving MEMS resonator designs for fabrication. In: Proceedings of the 8th international conference on evolvable systems: from biology to hardware, pp 213–224

  64. Campbell ML (2000) The A-Design Invention Machine: A Means of Automating and Investigating Conceptual Design. Ph.D Thesis. Carnegie Mellon University, Carnegie Institute of Technology, United States of America

  65. Tosserams S, Etman LFP, Rooda JE (2010) A micro-accelerometer MDO benchmark problem. Struct Multidisciplinary Optimization 41(2): 255–275

    Article  MathSciNet  Google Scholar 

  66. Kamalian R, Agogino AM (2005) Improving evolutionary synthesis of MEMS through fabrication and testing feedback. IEEE Systems, Man and Cybernetics (SMC) 2005, Waikoloa, HI, USA October

  67. Wang K, Nguyen CT-C (1999) High-order medium frequency micromechanical electronic filters. J MicroElectroMechanical Syst 8(4): 534–556

    Article  Google Scholar 

  68. Moscato P (1993) An introduction to population approaches for optimization and hierarchical objective functions: a discussion on the role of tabu search. Ann Operations Res 41: 85–121

    Article  MATH  Google Scholar 

  69. Moscato P (1989) On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms. Technical Report Caltech Concurrent Computation Program, Report. 826, California Institute of Technology, Pasadena, California, USA

  70. Buriol L., Franca P., Moscato P (2004) A new memetic algorithm for the asymmetric traveling salesman problem. J Heuristics 10(5): 483–506

    Article  MATH  Google Scholar 

  71. Krasnogor N, Smith J (2005) A tutorial for competent memetic algorithms: model, taxonomy and design issues. IEEE Trans Evol Comput 9(5):474–488. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1514472

    Google Scholar 

  72. Marchiori E (2002) Genetic, iterated and multistart local search for the maximum clique problem, in applications of evolutionary computing. LNCS 2279. Springer, pp 112–121

  73. Vazquez M, Whitley L (2000) A hybrid genetic algorithm for the quadratic assignment problem, in GECCO-2000. In: Whitley D, Goldberg D, Cantu-Paz E, Spector L, Parmee I, Beyer H-G (eds) Proceedings of the genetic and evolutionary computation conference. Morgan Kaufmann, Massachusetts, pp 135–142

  74. Kicinger R, Arciszewski T (2006) Empirical analysis of memetic algorithms for conceptual design of steel structural systems in tall buildings. Adv Eng Struct Mech Constr

  75. Cengiz Y, Kilic U (2010) Memetic Optimization Algorithm Applied to Design Microwave Amplifier for the Specific Gain Value Constrained by the Minimum Noise over the Available Bandwidth

  76. Coe S, Areibi S, Moussa M (2007) A hardware Memetic accelerator for VLSI circuit partitioning. Comput Electr Eng 33(4):233–248. http://www.sciencedirect.com/science/article/pii/S0045790607000183

    Google Scholar 

  77. Tang M, Yao X (2007) A memetic algorithm for VLSI Floorplanning. IEEE Trans Syst Man Cybern-Part B: Cybern 37(1)

  78. Fonseca CM, Paquete L, Lopez-Ibanez M (2006) An improved dimension-sweep algorithm for the hypervolume indicator. In: IEEE congress on evolutionary computation, Vancouver, Canada, pp 1157–1163

  79. Fan Z, Seo K, Hu J, Goodmand ED, Rosenberg RC (2004) A novel evolutionary engineering design approach for mixed-domain systems. Eng Optimization 36(2): 127–147

    Article  Google Scholar 

  80. Shanavas IH, Gnanamurthy RK (2009) “Application metaheuristic technique for solving VLSI global routing problem” Advances in recent technologies in communication and computing, international conference on, pp 915–917

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Farnsworth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farnsworth, M., Benkhelifa, E., Tiwari, A. et al. An efficient evolutionary multi-objective framework for MEMS design optimisation: validation, comparison and analysis. Memetic Comp. 3, 175–197 (2011). https://doi.org/10.1007/s12293-011-0067-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12293-011-0067-6

Keywords

Navigation