Skip to main content

Advertisement

Log in

Memetic algorithms, domain knowledge, and financial investing

  • Regular Research paper
  • Published:
Memetic Computing Aims and scope Submit manuscript

Abstract

How might domain knowledge constrain a genetic algorithm and systematically impact the algorithm’s traversal of the search space? In particular, in this paper the hypothesis is advanced that a semantic tree of financial knowledge can be used to influence the results of a genetic algorithm for financial investing problems. An algorithm is described, called the “Memetic Algorithm for Domain Knowledge”, and is instantiated in a software system. In mutation experiments, this system chooses financial ratios to use as inputs to a neural logic network which classifies stocks as likely to increase or decrease in value. The mutation is guided by a semantic tree of financial ratios. In crossover experiments, this system solves a portfolio optimization problem in which components of an individual represent weights on stocks; knowledge in the form of a semantic tree of industries determines the order in which components are sorted in individuals. Both synthetic data and real-world data are used. The experimental results show that knowledge can be used to reach higher fitness individuals more quickly. More interestingly, the results show how conceptual distance in the human knowledge can correspond to distance between evolutionary individuals and their fitness. In other words, knowledge might be dynamically used to at times increase the step size in a search algorithm or at times to decrease the step size. These results shed light on the role of knowledge in evolutionary computation and are part of the larger body of work to delineate how domain knowledge might usefully constrain the genetic algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alba E, Tomassini M (2002) Parallelism and evolutionary algorithms. IEEE Trans Evol Comput 6(5): 443–462

    Article  Google Scholar 

  2. Angeline P (1997) Subtree crossover: building block engine or macromutation? In: Jea K (ed) Proceedings of the second annual genetic programming conference. Stanford University/Morgan Kaufmann, pp 9–17

  3. Aranha C, Iba H (2009) The memetic tree-based genetic algorithm and its application to portfolio optimization. Memetic Comp 1(2): 139–151

    Article  Google Scholar 

  4. Berry B (2004) Editorial. Intell Syst Account Financ Manag 12(1): 1–4

    Article  Google Scholar 

  5. Bhattacharyya M, Bandyopadhyay S (2009) Solving maximum fuzzy clique problem with neural networks and its applications. Memetic Comp 1(4): 281–290. doi:10.1007/s12293-009-0019-6

    Article  Google Scholar 

  6. Bhattacharyya S, Pictet OV, Zumbach G (2002) Knowledge-intensive genetic discovery in foreign exchange markets. IEEE Trans Evol Comput 6(2): 169–181

    Article  Google Scholar 

  7. Bonissone P, Subbu R, Eklund N, Kiehl T (2006) Evolutionary algorithms + domain knowledge = real-world evolutionary computation. IEEE Trans Evol Comput 10(3): 256–280

    Article  Google Scholar 

  8. Buriol LS, Resende MGC, Ribeiro CC, Thorup M (2002) A memetic algorithms for OSPF routing. In: Proceedings of the 6th INFORMS telecommunications conference, Boca Raton, Florida, pp 187–188

  9. Cacciola M, Megali G, Fiasché M, Versaci M, Morabito FC (2010) A comparison between neural networks and k-nearest neighbours for blood cells taxonomy. Memetic Comp 2(3): 237–246

    Article  Google Scholar 

  10. Chen AP, Chen MY (2006) Integrating extended classifier system and knowledge extraction model for financial investment prediction: an empirical study. Expert Syst Appl 31(1): 174–183

    Article  Google Scholar 

  11. Chen SH (2002) Genetic algorithms and genetic programming in computational finance. Kluwer, Boston

    Book  Google Scholar 

  12. Conrad M (1979) Bootstrapping on the adaptive landscape. BioSystems 11(2–3): 167–182

    Article  Google Scholar 

  13. Dawkins R (1989) The selfish gene. 2 edn. Oxford University Press, New York

    Google Scholar 

  14. De Jong ED, Watson RA, Thierens D (2005) On the complexity of hierarchical problem solving. In: Proceedings of the genetic and evolutionary computation conference, Washington DC, 2005. ACM, pp 1201–1208

  15. De Jong KA (2006) Evolutionary computation: a unified approach. MIT, Cambridge

    MATH  Google Scholar 

  16. De Jong KA, Spears WM, Gordon DF (1993) Using genetic algorithms for concept learning. Mach Learn 13(2–3): 161–188

    Article  Google Scholar 

  17. Du J, Rada R (2010) Training a neural logic network to predict financial returns: a case study. Int J Electron Finance 4(1): 19–38

    Article  Google Scholar 

  18. FTSE (2011) Industry classification benchmark production specification. FTSE International Limited, London. http://www.icbenchmark.com/ICBDocs/ProductSpec_02_2008.pdf

  19. Giraldez R, Aguilar-Ruiz JS, Riquelme JC (2005) Knowledge-based fast evaluation for evolutionary learning. IEEE Trans Syst Man Cybern Part C 35(2): 254–261

    Article  Google Scholar 

  20. Goldberg DE (1989) Genetic algorithms in optimization, search and machine learning. Addison-Wesley, Reading

    Google Scholar 

  21. He J, Yao X, Li J (2005) A comparative study of three evolutionary algorithms incorporating different amounts of domain knowledge for node covering problem. IEEE Trans Syst Man Cybern Part C 35(2): 266–271

    Article  Google Scholar 

  22. Holland J (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor

    Google Scholar 

  23. Kim K-j (2004) Artificial neural networks with feature transformation based on domain knowledge for the prediction of stock index futures. Intell Syst Account Financ Manag 12(2): 167–176

    Article  Google Scholar 

  24. Kim MK, Han I, Lee KC (2004) Hybrid knowledge integration using the fuzzy genetic algorithm: prediction of the Korea Stock Price Index. Intell Syst Account Financ Manag 12(1): 43–60

    Article  Google Scholar 

  25. Klein MR, Methlie LB (1995) Knowledge-based decision support systems with applications in business. 2 edn. Wiley, New York

    Google Scholar 

  26. Knoblock CA (1994) Automatically generating abstractions for planning. Artif Intell 68(2): 243–302

    Article  MATH  Google Scholar 

  27. Krasnogor N, Smith J (2005) A tutorial for competent memetic algorithms: model, taxonomy, and design issues. IEEE Trans Evol Comput 9(5): 474–488

    Article  Google Scholar 

  28. Krasnogor N, Smith J (2008) Memetic algorithms: the polynomial local search complexity theory perspective. J Math Model Algorithms 7(1): 3–24

    Article  MathSciNet  MATH  Google Scholar 

  29. Lin Y, Bhanu B (2005) Evolutionary feature synthesis for object recognition. IEEE Trans Syst Man Cybern Part C 35(2): 156–171

    Article  Google Scholar 

  30. Lumanpauw E, Pasquier M, Chai Q (2007) MNFS-FPM: a novel memetic neuro-fuzzy system based financial portfolio management. In: IEEE congress on evolutionary computation, Singapore, pp 2554–2561

  31. Matsatsinis NF, Doumpos M, Zopounidis C (1997) Knowledge acquisition and representation for expert systems in the field of financial analysis. Expert Syst Appl 12(2): 247–262

    Article  Google Scholar 

  32. Mauttone A, Urquhart ME (2009) A multi-objective metaheuristic approach for the transit network design problem. Public Transp 1(4): 253–273

    Article  Google Scholar 

  33. McPhee NF, Ohs B, Hutchison T (2008) Semantic building blocks in genetic programming. In: Proceedings of the 11th European conference on genetic programming, Naples, 2008. Springer, Berlin, pp 134–145

  34. Moraglio A, Borenstein Y (2009) A gaussian random field model of smooth fitness landscapes. In: Foundations of genetic algorithms, Orlando, 2009. ACM, New York, pp 171–182

  35. Moscato P (1989) On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms. Report 826, Caltech Concurrent Computation Program. California Institute of Technology, Pasadena

  36. Moscato P (1999) Memetic algorithms: a short introduction. In: Corne D, Glover F, Dorigo M (eds) New ideas in optimization. McGraw-Hill, New York, pp 219–234

    Google Scholar 

  37. Nguyen QH, Ong YS, Krasnogor N (2007) A study on the design issues of memetic algorithm. In: Proceedings of IEEE Congress on evolutionary computation, Singapore, pp 2390–2397

  38. Nguyen QH, Ong YS, Lim MH (2009) A probabilistic memetic framework. IEEE Trans Evol Comput 13(3): 604–623

    Article  Google Scholar 

  39. O’Neill M, Ryan C, Keijzer M, Cattolico M (2003) Crossover in grammatical evolution. Genet Program Evol Mach 4(1): 67–93. doi:10.1023/a:1021877127167

    Article  MATH  Google Scholar 

  40. Oh K, Kim TY, Min S-H, Lee HY (2006) Portfolio algorithm based on portfolio beta using genetic algorithm. Expert Syst Appl 30(3): 527–534

    Article  Google Scholar 

  41. Ong Y-S, Lim M-H, Zhu N, Wong K-W (2006) Classification of adaptive memetic algorithms: a comparative study. IEEE Trans Syst Man Cybern Part B 36(1): 141–152

    Article  Google Scholar 

  42. Otero F, Freitas A, Johnson C (2010) A hierarchical multi-label classification ant colony algorithm for protein function prediction. Memetic Comp 2(3): 165–181. doi:10.1007/s12293-010-0045-4

    Article  Google Scholar 

  43. Patterson DW (1990) Introduction to artificial intelligence and expert systems. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  44. Rada R (1991) Computers and gradualness: the selfish meme. AI & Society 5(3): 246–254

    Article  Google Scholar 

  45. Rada R (2008) Expert systems and evolutionary computing for financial investing: a review. Expert Syst Appl 34(4): 2232–2240

    Article  Google Scholar 

  46. Rada R, Mili H, Bicknell E, Blettner M (1989) Development and application of a metric on semantic nets. IEEE Trans Syst Man Cybern 19(1): 17–30

    Article  Google Scholar 

  47. Ryan C, Collins JJ, Neill MO (1998) Grammatical evolution: evolving programs for an arbitrary language. In: Banzhaf W, Poli R, Schoenauer M, Fogarty TC (eds) First European workshop on genetic programming. Springer, Berlin, pp 83–95

    Google Scholar 

  48. Sattar A, Seguier R (2010) HMOAM: hybrid multi-objective genetic optimization for facial analysis by appearance model. Memetic Comp 2(1):25–46. doi:10.1007/s12293-010-0038-3

    Google Scholar 

  49. Slagle JR, Chin-Liang C, Lee RCT (1970) A new algorithm for generating prime implicants. IEEE Trans Comput C 19(4): 304–310

    Article  MATH  Google Scholar 

  50. Streichert F, Tanaka-Yamawaki M (2006) The effect of local search on the constrained portfolio selection problem. In: IEEE Congress on evolutionary computation, Vancouver, BC, pp 2368–2374

  51. Teh H-H (1995) Neural logic networks. World Scientific, Singapore

    Google Scholar 

  52. Tsakonas A, Dounias G, Doumpos M, Zopounidis C (2006) Bankruptcy prediction with neural logic networks by means of grammar-guided genetic programming. Expert Syst Appl 30(3): 449–461

    Article  Google Scholar 

  53. Vose MD (1999) The simple genetic algorithm: foundations and theory. MIT, Cambridge

    MATH  Google Scholar 

  54. Wang J-H, Leu J-Y (1996) Stock market trend prediction using ARIMA-based neural networks. In: Proceedings of 1996 IEEE international conference on neural networks, Washington, DC, pp 2160–2165

  55. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1): 67–82

    Article  Google Scholar 

  56. Yu L, Wang S, Lai KK (2006) An integrated data preparation scheme for neural network data analysis. IEEE Trans Knowl Data Eng 18(2): 217–230

    Article  Google Scholar 

  57. Zopounidis C, Doumpos M (2000) Intelligent decision aiding systems based on multiple criteria for financial engineering. Kluwer, Boston

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Du.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, J., Rada, R. Memetic algorithms, domain knowledge, and financial investing. Memetic Comp. 4, 109–125 (2012). https://doi.org/10.1007/s12293-012-0079-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12293-012-0079-x

Keywords

Navigation