Abstract
The ultimate aim of Memetic Computing is the fully autonomous solution to complex optimisation problems. For a while now, the Memetic algorithms literature has been moving in the direction of ever increasing generalisation of optimisers initiated by seminal papers such as Krasnogor and Smith (IEEE Trans 9(5):474–488, 2005; Workshops Proceedings of the 2000 International Genetic and Evolutionary Computation Conference (GECCO2000), 2000), Krasnogor and Gustafson (Advances in nature-inspired computation: the PPSN VII Workshops 16(52), 2002) and followed by related and more recent work such as Ong and Keane (IEEE Trans Evol Comput 8(2):99–110, 2004), Ong et al. (IEEE Comp Int Mag 5(2):24–31, 2010), Burke et al. (Hyper-heuristics: an emerging direction in modern search technology, 2003). In this recent trend to ever greater generalisation and applicability, the research has focused on selecting (or even evolving), the right search operator(s) to use when tackling a given instance of a fixed problem type (e.g. Euclidean 2D TSP) within a range of optimisation frameworks (Krasnogor, Handbook of natural computation, Springer, Berlin/Heidelberg, 2009). This paper is the first step up the generalisation ladder, where one assumes that the optimiser is given (perhaps by other solvers who do not necessarily know how to deal with a given problem instance) a problem instance to tackle and it must autonomously and without human intervention pre-select which is the likely family class of problems the instance belongs to. In order to do that we propose an Automatic Problem Classifier System able to identify automatically which kind of instance or problem the system is dealing with. We test an innovative approach to the Universal Similarity Metric, as a variant of the normalised compression distance (NCD), to classify different problem instances. This version is based on the management of compression dictionaries. The results obtained are encouraging as we achieve a 96 % average classification success with the studied dataset.








Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Bailey M, Oberheide J, Andersen J, Mao ZM, Jahanian F, Nazario J (2007) Automated classification and analysis of internet malware. In: Proceedings of the 10th international conference on Recent advances in intrusion detection, Springer, Berlin, Heidelberg, RAID’07, pp 178–197. http://dl.acm.org/citation.cfm?id=1776434.1776449
Barthel D, Hirst JD, Blazewicz J, Burke EK, Krasnogor N (2007) Procksi: a decision support system for protein (structure) comparison, knowledge, similarity and information. BMC Bioinformatics 8:416. doi:10.1186/1471-2105-8-416. http://www.biomedcentral.com/bmcbioinformatics/
Burke E, Kendall G, Newall J, Hart E, Ross P, Schulenburg S (2003) Hyper-Heuristics: an emerging direction in modern search technology. In: Glover F, Kochenberger GA (eds) Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol 57. Springer, US, pp 457-474. doi:10.1007/0-306-48056-5_16
Captivo ME, Figueira J, Martins E, Santos JL (2003) Solving bicriteria 0–1 knapsack problems using a labeling algorithm. Comput Oper Res 30(12):1865–1886. doi:10.1016/S0305-0548(02)00112-0. http://pagesperso.lina.univ-nantes.fr/info/perso/permanents/jorge/bikp/2.html
Chaitin GJ (1975) A theory of program size formally identical to information theory. J ACM 22(3):329–340. doi:10.1145/321892.321894
Chen X, Francia B, Li M, Mckinnon B, Seker A (2004) Shared information and program plagiarism detection. IEEE Trans Inf Ther 50:1545–1551
CHiPPS (2010) Yan Xu, Ted Ralphs, Laszlo Ladanyi, Matthew Saltzman. https://projects.coin-or.org/svn/chipps/blis/stable/0.9/blis/examples/-data/hard/
Cilibrasi R, Vitnyi PMB (2005) Clustering by compression. IEEE Trans Inf Theor 51:1523–1545
Timetabling competition I (2012) http://www.cs.qub.ac.uk/itc2007/login/secretpage.php
Compustat (1962) http://www.compustat.com/
CRSP (1960) Center for research in security prices. http://www.crsp.com/products/ccm.htm
Dawyndt P, De Meyer H, De Baets B (2005) The complete linkage clustering algorithm revisited. Soft Comput 9(5):385–392. doi:10.1007/s00500-003-0346-3
Gheorghescu M (2005) An automated virus classification system. In: Virus Bulletin Conference, pp 294–300
Huffman DA (1952) A method for construction of minimum-redundancy codes. Proc Inst Radio Eng 40(9):1098–1101
Project-team of INRIA Lille Nord Europe D (2007) Paradiseo: a software framework for metaheuristics. http://paradiseo.gforge.inria.fr
Johnson S (1967) Hierarchical clustering schemes. Psychometrika 32:241–254. doi:10.1007/BF02289588
Kolmogorov AN (1965) Three approaches to the quantitative definition of information. Probl Inf Transm 1:1–7
Krasnogor N (2009) Handbook of natural computation. chap Memetic algorithms. Natural computing, Springer, Berlin/ Heidelberg. http://www.cs.nott.ac.uk/nxk/PAPERS/hnc-nxk.pdf
Krasnogor N, Gustafson S (2002) Toward truly “memetic” memetic algorithms: discussion and proofs of concept. In: Proceedings of advances in nature-inspired computation: The Parallel Problem Solving from Nature VII Workshops 16(52)
Krasnogor N, Pelta DA (2004) Measuring the similarity of protein structures by means of the universal similarity metric. Bioinformatics 20(7):1015–1021. doi:10.1093/bioinformatics/bth031. http://bioinformatics.oupjournals.org/cgi/content/abstract/20/7/1015?etoc
Krasnogor N, Smith J (2000) Mafra: a java memetic algorithms framework. In: Workshops Proceedings of the 2000 International Genetic and Evolutionary Computation Conference (GECCO2000)
Krasnogor N, Smith J (2005) A tutorial for competent memetic algorithms: model, taxonomy, and design issues. IEEE Trans Evol Comput 9(5):474–488. doi:10.1109/TEVC.2005.850260
Li M, Vitanyi P (1997) An introduction to kolmogorov complexity and its applications. Preface to the first edition
Li M, Badger JH, Chen X, Kwong S, Kearney P, Zhang H (2001) An information-based sequence distance and its application to whole mitochondrial genome phylogeny. Bioinformatics 17(2):149–154. doi:10.1093/bioinformatics/17.2.149. http://bioinformatics.oxfordjournals.org/content/17/2/149.abstract, http://bioinformatics.oxfordjournals.org/content/17/2/149.full.pdf+html
Gailly JL, Adler M (1992) Gzip. http://www.gzip.org/
MOCOlib (2010) Multiobjective combinatorial optimization problems. http://xgandibleux.free.fr/mocolib/
Ong YS, Keane AJ (2004) Meta-lamarckian learning in memetic algorithms. IEEE Trans Evol Comput 8(2):99–110. http://dblp.unitrier.de/db/journals/tec/tec8.html#OngK04
Ong YS, Lim MH, Chen X (2010) Memetic computation—past, present & future [research frontier]. IEEE Comp Int Mag 5(2):24–31. http://dblp.uni-trier.de/db/journals/cim/cim5.html#OngLC10
ORlib (2012) J. E. Beasley. http://people.brunel.ac.uk/mastjjb/jeb/orlib
Siepmann P, Martin CP, Vancea I, Moriarty PJ, Krasnogor N (2007) A genetic algorithm approach to probing the evolution of self-organised nanostructured systems. Nano Lett 7(7):1985–1990. doi:10.1021/nl070773m. http://pubs.acs.org/cgi-bin/download.pl?nl070773m/o7do (for the latest version please check the official journal site)
Rousseeuw P (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20(1):53–65. doi:10.1016/0377-0427(87)90125-7
Cilibrasi R, Vitányi P, de Wolf R (2004) Algorithmic clustering of music based on string compression. Comput Music J 28(4):49–67
Terrazas G, Siepman P, Kendal G, Krasnogor N (2007) An evolutionary methodology for the automated design of cellular automaton-based complex systems. J Cell Autom 2(1):77–102. http://www.oldcitypublishing.com/JCA/JCA.html (for the latest version of this paper please refer to the journal website)
TSPLIB (2012) http://comopt.ifi.uni-heidelberg.de/software/tsplib95/
VSLICAD (2000) Andrew B. Kahng, Igor Markov. http://vlsicad.eecs.umich.edu/bk/gsrcbench/
Woolley RAJ, Stirling J, Radocea A, Krasnogor N, Moriarty P (2011) Automated probe microscopy via evolutionary optimization at the atomic scale. Appl Phys Lett 98(25):253104. http://apl.aip.org/resource/1/applab/v98/i25/p253104_s1
Acknowledgments
NK would like to acknowledge the EPSRC for funding Projects EP/J004111/1 and EP/H000968/. Iván Contreras and Ignacio Arnaldo are supported by Spanish Government Avanza Competitividad I + D + I: TSI-020100-2010-962 and Iyelmo INNPACTO-IPT-2011-1198-430000 Projects and the mobility Grant: Orden ECD /3628/2011, de 26 de diciembre, Dirección General de Política Universitaria, Ministerio de Educación, Cultura y Deportes.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Contreras, I., Arnaldo, I., Krasnogor, N. et al. Blind optimisation problem instance classification via enhanced universal similarity metric. Memetic Comp. 6, 263–276 (2014). https://doi.org/10.1007/s12293-014-0145-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12293-014-0145-7