Skip to main content

Advertisement

Log in

Adaptive multiobjective evolutionary algorithm for large-scale transformer ratio error estimation

  • Regular research paper
  • Published:
Memetic Computing Aims and scope Submit manuscript

Abstract

As a typical large-scale multiobjective optimization problem extracted from real-world applications, the voltage transformer ratio error estimation (TREE) problem is challenging for existing evolutionary algorithms (EAs). Due to the large number of decision variables in the problems, existing algorithms cannot solve TREE problems efficiently. Besides, most EAs may fail to balance the convergence enhancement and diversity maintenance, leading to the trap in local optima even at the early stage of the evolution. This work proposes an adaptive large-scale multiobjective EA (LSMOEA) to handle the TREE problems with thousands of decision variables. Generally, multiple efficient offspring generation and environmental selection strategies selected from some representative LSMOEAs are included. Then an adaptive selection strategy is used to determine which offspring generation and environmental selection operators are used in each generation of the evolution. Thus, the search behavior of the proposed algorithm evolves along with the evolution process, the balance between convergence and diversity is maintained, and the proposed algorithm is expected to solve TREE problems effectively and efficiently. Experimental results show that the proposed algorithm achieves significant performance improvement due to the adaptive selection of different operators, providing an effective and efficient approach for large-scale optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. In the original TREE problems, several constraints and the third objective are also designed. Since the topic of this work is unconstrained large-scale multiobjective optimization, the constraints and the third objective are ignored in this work. Moreover, we have constructed the TREE7 problem from a substation with the same topology as TREE6. With different decision variables and sampled data, TREE7 is the same as TREE6 in function formulation.

References

  1. Antonio LM, Coello CAC (2013) Use of cooperative coevolution for solving large scale multiobjective optimization problems. In: Proceedings of 2013 IEEE congress on evolutionary computation (CEC 2013), pp 2758–2765

  2. Auer P, Cesa-Bianchi N, Fischer P (2002) Finite-time analysis of the multiarmed bandit problem. Mach Learn 47(2):235–256

    Article  Google Scholar 

  3. Beume N, Naujoks B, Emmerich M (2007) SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur J Oper Res 181(3):1653–1669

    Article  Google Scholar 

  4. Calderín JF, Masegosa AD, Pelta DA (2016) An algorithm portfolio for the dynamic maximal covering location problem. Memet Comput 9(2):141–151

    Article  Google Scholar 

  5. Cheng R (2016) Nature inspired optimization of large problems. Ph.D. thesis, University of Surrey

  6. Cheng R, Jin Y, Olhofer M, Sendhoff B (2017) Test problems for large-scale multiobjective and many-objective optimization. IEEE Trans Cybern 47(12):4108–4121

    Article  Google Scholar 

  7. Coello CAC, Lamont GB, Van Veldhuizen DA et al (2007) Evolutionary algorithms for solving multi-objective problems, vol 5. Springer, Berlin

    MATH  Google Scholar 

  8. Coello CAC, Sierra MR (2004) A study of the parallelization of a coevolutionary multi-objective evolutionary algorithm. In: Proceedings of Mexican international conference on artificial intelligence (MICAI). Springer, pp 688–697

  9. Consoli PA, Mei Y, Minku LL, Yao X (2016) Dynamic selection of evolutionary operators based on online learning and fitness landscape analysis. Soft Comput 20(10):3889–3914

    Article  Google Scholar 

  10. Corne DW, Jerram NR, Knowles JD, Oates MJ (2001) PESA-II: region-based selection in evolutionary multi-objective optimization. In: Proceedings of the 3rd annual conference on genetic and evolutionary computation, GECCO’01. Morgan Kaufmann Publishers Inc., pp 283-290

  11. Deb K, Jain H (2014) An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints. IEEE Trans Evol Comput 18(4):577–601

    Article  Google Scholar 

  12. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  13. Deb K, Thiele L, Laumanns M, Zitzler E (2005) Scalable test problems for evolutionary multiobjective optimization. Evolutionary multiobjective optimization. Advanced Information and Knowledge Processing. Springer, London, pp 105–145

    MATH  Google Scholar 

  14. Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1):3–18

    Article  Google Scholar 

  15. Fialho Á, Costa LD, Schoenauer M, Sebag M (2008) Extreme value based adaptive operator selection. In: Rudolph G, Jansen T, Lucas SM, Poloni C, Beume N (eds) Parallel problem solving from nature—PPSN X, vol 5199. Springer, Berlin, pp 175–184

    Chapter  Google Scholar 

  16. Fialho Á, Costa LD, Schoenauer M, Sebag M (2010) Analyzing bandit-based adaptive operator selection mechanisms. Ann Math Artif Intell 60(1–2):25–64

    Article  MathSciNet  Google Scholar 

  17. Goldberg DE (1990) Probability matching, the magnitude of reinforcement, and classifier system bidding. Mach Learn 5:407–425

    Google Scholar 

  18. Gonçalves RA, Almeida CP, Pozo A (2015) Upper confidence bound (UCB) algorithms for adaptive operator selection in MOEA/D. In: International conference on evolutionary multi-criterion optimization. Springer, pp 411–425

  19. He C, Cheng R, Tian Y, Zhang X (2020) Iterated problem reformulation for evolutionary large-scale multiobjective optimization. In: Proceedings of 2020 IEEE congress on evolutionary computation (CEC 2020). IEEE, pp 1–8

  20. He C, Cheng R, Yazdani D (2020) Adaptive offspring generation for evolutionary large-scale multiobjective optimization. IEEE Trans Syst Man Cybern Syst 52(2):786–798

    Article  Google Scholar 

  21. He C, Cheng R, Zhang C, Tian Y, Chen Q, Yao X (2020) Evolutionary large-scale multiobjective optimization for ratio error estimation of voltage transformers. IEEE Trans Evol Comput 24(5):868–881

    Article  Google Scholar 

  22. He C, Huang S, Cheng R, Tan KC, Jin Y (2021) Evolutionary multiobjective optimization driven by generative adversarial networks (GANs). IEEE Trans Cybern 51(6):3129–3142

    Article  Google Scholar 

  23. He C, Li L, Tian Y, Zhang X, Cheng R, Jin Y, Yao X (2019) Accelerating large-scale multiobjective optimization via problem reformulation. IEEE Trans Evol Comput 23(6):949–961

    Article  Google Scholar 

  24. He C, Tian Y, Jin Y, Zhang X, Pan L (2017) A radial space division based many-objective optimization evolutionary algorithm. Appl Soft Comput 61:603–621

    Article  Google Scholar 

  25. Huband S, Hingston P, Barone L, While L (2006) A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans Evol Comput 10(5):477–506

    Article  Google Scholar 

  26. Ishibuchi H, Murata T (1998) Multiobjective genetic local search algorithm and its application to flowshop scheduling. IEEE Trans Syst Man Cybern Part C 28(3):392–403

    Article  Google Scholar 

  27. Kukkonen S, Lampinen J (2005) GDE3: the third evolution step of generalized differential evolution. In: Proceedings of 2005 IEEE congress on evolutionary computation (CEC 2005). IEEE, pp 443–450

  28. Li H, Zhang Q (2009) Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans Evol Comput 13:284–302

    Article  Google Scholar 

  29. Li K, Fialho A, Kwong S, Zhang Q (2014) Adaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 18(1):114–130

    Article  Google Scholar 

  30. Li L, Wang X (2021) An adaptive multiobjective evolutionary algorithm based on grid subspaces. Memet Comput 13(2):249–269

    Article  Google Scholar 

  31. Liu HL, Gu F, Zhang Q (2014) Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems. IEEE Trans Evol Comput 18(3):450–455

    Article  Google Scholar 

  32. Ma X, Liu F, Qi Y, Wang X, Li L, Jiao L, Yin M, Gong M (2015) A multiobjective evolutionary algorithm based on decision variable analyses for multiobjective optimization problems with large-scale variables. IEEE Trans Evol Comput 20(2):275–298

    Article  Google Scholar 

  33. Nebro AJ, Durillo JJ, Garcia-Nieto J, Coello CC, Luna F, Alba E (2009) SMPSO: a new PSO-based metaheuristic for multi-objective optimization. In: 2009 IEEE symposium on computational intelligence in multi-criteria decision-making (MCDM). IEEE, pp 66–73

  34. Omidvar MN, Yang M, Mei Y, Li X, Yao X (2017) DG2: a faster and more accurate differential grouping for large-scale black-box optimization. IEEE Trans Evol Comput 21(6):929–942

    Article  Google Scholar 

  35. Pan L, He C, Tian Y, Wang H, Zhang X, Jin Y (2018) A classification-based surrogate-assisted evolutionary algorithm for expensive many-objective optimization. IEEE Trans Evol Comput 23(1):74–88

    Article  Google Scholar 

  36. Ponsich A, Jaimes AL, Coello CAC (2013) A survey on multiobjective evolutionary algorithms for the solution of the portfolio optimization problem and other finance and economics applications. IEEE Trans Evol Comput 17(3):321–344

    Article  Google Scholar 

  37. Potter MA, De Jong KA (1994) A cooperative coevolutionary approach to function optimization. In: Davidor Y, Schwefel HP, Männer R (eds) Parallel problem solving from nature—PPSN III. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 249–257

    Chapter  Google Scholar 

  38. Qin S, Sun C, Jin Y, Tan Y, Fieldsend J (2021) Large-scale evolutionary multiobjective optimization assisted by directed sampling. IEEE Trans Evol Comput 25(4):724–738

    Article  Google Scholar 

  39. Thierens D (2005) An adaptive pursuit strategy for allocating operator probabilities. In: Proceedings of the 7th annual conference on genetic and evolutionary computation, GECCO’05. Association for Computing Machinery, pp 1539–1546

  40. Thierens D (2007) Adaptive strategies for operator allocation. In: Lobo FG, Lima CF, Michalewicz Z (eds) Parameter setting in evolutionary algorithms. Studies in computational intelligence, vol 54. Springer, Berlin, pp 77–90

    Google Scholar 

  41. Tian Y, Cheng R, Zhang X, Jin Y (2017) PlatEMO: a matlab platform for evolutionary multi-objective optimization [educational forum]. IEEE Comput Intell Mag 12(4):73–87

    Article  Google Scholar 

  42. Tian Y, Si L, Zhang X, Cheng R, He C, Tan KC, Jin Y (2021) Evolutionary large-scale multi-objective optimization: a survey. ACM Comput Surv (CSUR) 54(8):1–34

    Google Scholar 

  43. Tian Y, Zheng X, Zhang X, Jin Y (2020) Efficient large-scale multiobjective optimization based on a competitive swarm optimizer. IEEE Trans Cybern 50(8):3696–3708

    Article  Google Scholar 

  44. Wang Y, Li B (2009) Multi-strategy ensemble evolutionary algorithm for dynamic multi-objective optimization. Memet Comput 2(1):3–24

    Article  Google Scholar 

  45. Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731

    Article  Google Scholar 

  46. Zhang X, Tian Y, Cheng R, Jin Y (2016) A decision variable clustering-based evolutionary algorithm for large-scale many-objective optimization. IEEE Trans Evol Comput 22(1):97–112

    Article  Google Scholar 

  47. Zille H, Ishibuchi H, Mostaghim S, Nojima Y (2018) A framework for large-scale multiobjective optimization based on problem transformation. IEEE Trans Evol Comput 22(2):260–275

    Article  Google Scholar 

  48. Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms: empirical results. Evol Comput 8(2):173–195

    Article  Google Scholar 

  49. Zitzler E, Künzli S (2004) Indicator-based selection in multiobjective search. In: Yao X, Burke EK, Lozano JA, Smith J, Merelo-Guervós JJ, Bullinaria JA, Rowe JE, Tiňo P, Kabán A, Schwefel HP (eds) Parallel problem solving from nature—PPSN VIII. Springer, Berlin, pp 832–842

    Chapter  Google Scholar 

  50. Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans Evol Comput 3(4):257–271

  51. Ziztler E, Laumanns M, Thiele L (2002) SPEA2: improving the strength Pareto evolutionary algorithm for multiobjective optimization. Evolutionary methods for design, optimization, and control, pp 95–100

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Natural Science Foundation of China (Nos. U20A20306, 61903178, and 61906081), the Guangdong Basic and Applied Basic Research Foundation (No. 2019A1515110575), the Guangdong Provincial Key Laboratory (Grant No. 2020B121201001), the Program for Guangdong Introducing Innovative and Enterpreneurial Teams (Grant No. 2017ZT07X386), and the Shenzhen Science and Technology Program (Grant No. KQTD2016112514355531 and RCBS20200714114817264)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C., Li, L., He, C. et al. Adaptive multiobjective evolutionary algorithm for large-scale transformer ratio error estimation. Memetic Comp. 14, 237–251 (2022). https://doi.org/10.1007/s12293-022-00368-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12293-022-00368-7

Keywords