Skip to main content
Log in

Multimodal multi-objective optimization with multi-stage-based evolutionary algorithm

  • Regular Research Paper
  • Published:
Memetic Computing Aims and scope Submit manuscript

Abstract

A key issue in tackling multimodal multi-objective optimization problems (MMOPs) is achieving the balance between objective space diversity and decision space diversity to obtain multiple Pareto sets (PSs) while guaranteeing convergence to the Pareto front (PF). However, most of the existing methods for MMOPs face the following two shortages: (i) they put insufficient emphasis on improving decision space diversity, resulting in missing some PSs or PS segments; and (ii) they lack the utilization of promising historical individuals which may help search the PSs. To alleviate these limitations, this paper proposes a novel multi-stage evolutionary algorithm with two improved optimization strategies. Specifically, the proposed method decomposes solving MMOP into two tasks, i.e., the Exploration task and the Exploitation task. The Exploration task first aims to explore the decision space to detect the multiple PSs, then, the Exploitation task aims to enhance the diversities on both objective and decision spaces (i.e., exploiting the PF and PSs). To better search PSs, historical individuals that are well-distributed in the decision space are stored as the evolutionary experience, and then used to generate offspring individuals. Moreover, a new differential evolution is designed to force crowded individuals to move to sparse and undetected regions on the PSs to enhance the diversity of PSs. Extensive experimental studies compare the proposed method with five state-of-the-art methods tailored for MMOPs on two benchmark test suites. The results demonstrate that the proposed method can outperform others in terms of three performance indicators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Fig. 4
Algorithm 2
Algorithm 3
Algorithm 4
Fig. 5

Similar content being viewed by others

Notes

  1. Basic definitions and concepts of MOPs are provided in the supplementary file.

  2. The experimental settings are introduced in Section. The guidance for reading the results is presented in Sect. C in the supplementary file.

  3. The final goal of solving an MMOP is to obtain a set of evenly distributed solutions on the PF and the multiple PSs.

References

  1. Liang JJ, Yue CT, Qu BY (2016) Multimodal multi-objective optimization: a preliminary study. In: 2016 IEEE congress on evolutionary computation (CEC). pp 2454–2461

  2. Han S, Zhu K, Zhou M, Cai X (2021) Information-utilization-method-assisted multimodal multiobjective optimization and application to credit card fraud detection. IEEE Trans Comput Soc Syst 8(4):856–869. https://doi.org/10.1109/TCSS.2021.3061439

    Article  Google Scholar 

  3. Zhang H, Ma L, Wang J, Wang L (2022) Furnace-grouping problem modeling and multi-objective optimization for special aluminum. IEEE Trans Emerg Top Comput Intell 6(3):544–555

    Article  Google Scholar 

  4. Han Y, Gong D, Jin Y, Pan Q (2019) Evolutionary multiobjective blocking lot-streaming flow shop scheduling with machine breakdowns. IEEE Trans Cybern 49(1):184–197

    Article  Google Scholar 

  5. Lu Z, Cheng R, Jin Y, Tan K, Deb K (2022) Neural architecture search as multiobjective optimization benchmarks: problem formulation and performance assessment. IEEE Trans Evol Comput. https://doi.org/10.48550/arXiv.2208.04321

    Article  Google Scholar 

  6. Han S, Zhu K, Zhou M, Cai X (2022) Competition-driven multimodal multiobjective optimization and its application to feature selection for credit card fraud detection. IEEE Trans Syst Man Cybern Syst. https://doi.org/10.1109/TSMC.2022.3171549

    Article  Google Scholar 

  7. Ming F, Gong W, Wang L, Gao L (2022) Balancing convergence and diversity in objective and decision spaces for multimodal multi-objective optimization. IEEE Trans Emerg Top Comput Intell. https://doi.org/10.1109/TETCI.2022.3221940

    Article  Google Scholar 

  8. Tanabe R, Ishibuchi H (2020) A review of evolutionary multimodal multiobjective optimization. IEEE Trans Evol Comput 24(1):193–200

    Article  Google Scholar 

  9. Grimme C, Kerschke P, Aspar P, Trautmann H, Preuss M, Deutz AH, Wang H, Emmerich M (2021) Peeking beyond peaks: challenges and research potentials of continuous multimodal multi-objective optimization. Comput Oper Res 136:105489

    Article  MathSciNet  MATH  Google Scholar 

  10. Li W, Zhang T, Wang R, Huang S, Liang J (2023) Multimodal multi-objective optimization: comparative study of the state-of-the-art. Swarm Evol Comput 77:101253

    Article  Google Scholar 

  11. Lin Q, Lin W, Zhu Z, Gong M, Li J, Coello CAC (2021) Multimodal multiobjective evolutionary optimization with dual clustering in decision and objective spaces. IEEE Trans Evol Comput 25(1):130–144

    Article  Google Scholar 

  12. Li W, Zhang T, Wang R, Ishibuchi H (2021) Weighted indicator-based evolutionary algorithm for multimodal multiobjective optimization. IEEE Trans Evol Comput 25(6):1064–1078

    Article  Google Scholar 

  13. Deb K, Tiwari S (2005) Omni-optimizer: A procedure for single and multi-objective optimization. In: International conference on evolutionary multi-criterion optimization, vol 3410. pp 47–61. https://doi.org/10.1007/978-3-540-31880-4_4

  14. Liu Y, Yen GG, Gong D (2019) A multimodal multiobjective evolutionary algorithm using two-archive and recombination strategies. IEEE Trans Evol Comput 23(4):660–674

    Article  Google Scholar 

  15. Liu Y, Ishibuchi H, Yen GG, Nojima Y, Masuyama N (2020) Handling imbalance between convergence and diversity in the decision space in evolutionary multimodal multiobjective optimization. IEEE Trans Evol Comput 24(3):551–565

    Google Scholar 

  16. Ishibuchi H, Peng Y, Pang LM (2022) Multi-modal multi-objective test problems with an infinite number of equivalent pareto sets. In: 2022 IEEE congress on evolutionary computation (CEC). pp 1–8. https://doi.org/10.1109/CEC55065.2022.9870307

  17. Tian Y, Liu R, Zhang X, Ma H, Tan KC, Jin Y (2021) A multipopulation evolutionary algorithm for solving large-scale multimodal multiobjective optimization problems. IEEE Trans Evol Comput 25(3):405–418. https://doi.org/10.1109/TEVC.2020.3044711

    Article  Google Scholar 

  18. Ming F, Gong W, Yang Y, Liao Z (2023) Constrained multimodal multi-objective optimization: test problem construction and algorithm design. Swarm Evol Comput 76:101209

    Article  Google Scholar 

  19. Liang J, Lin H, Yue C, Yu K, Guo Y, Qiao K (2022) Multiobjective differential evolution with speciation for constrained multimodal multiobjective optimization. IEEE Trans Evol Comput. https://doi.org/10.1109/TEVC.2022.3194253

    Article  Google Scholar 

  20. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  21. Yue C, Qu B, Liang J (2018) A multiobjective particle swarm optimizer using ring topology for solving multimodal multiobjective problems. IEEE Trans Evol Comput 22(5):805–817

    Article  Google Scholar 

  22. Zhang K, Shen C, Yen GG, Xu Z, He J (2021) Two-stage double niched evolution strategy for multimodal multiobjective optimization. IEEE Trans Evol Comput 25(4):754–768

    Article  Google Scholar 

  23. Fan Q, Yan X (2021) Solving multimodal multiobjective problems through zoning search. IEEE Trans Syst Man Cybern Syst 51(8):4836–4847

    Article  Google Scholar 

  24. Qu B, Li G, Yan L, Liang J, Yue C, Yu K, Crisalle OD (2022) A grid-guided particle swarm optimizer for multimodal multi-objective problems. Appl Soft Comput 117:108381

    Article  Google Scholar 

  25. Liang J, Qiao K, Yue C, Yu K, Qu B, Xu R, Li Z, Hu Y (2021) A clustering-based differential evolution algorithm for solving multimodal multi-objective optimization problems. Swarm Evol Comput 60:100788

    Article  Google Scholar 

  26. Wang W, Li G, Wang Y, Wu F, Zhang W, Li L (2022) Clearing-based multimodal multi-objective evolutionary optimization with layer-to-layer strategy. Swarm Evol Comput 68:100976. https://doi.org/10.1016/j.swevo.2021.100976

    Article  Google Scholar 

  27. Li W, Yao X, Zhang T, Wang R, Wang L (2022) Hierarchy ranking method for multimodal multi-objective optimization with local pareto fronts. IEEE Trans Evol Comput. https://doi.org/10.1109/TEVC.2022.3155757

    Article  Google Scholar 

  28. Li W, Ming M, Zhang T, Wang R, Huang S, Wang L (2022) Multimodal multi-objective evolutionary algorithm considering global and local pareto fronts. Acta Autom Sin 48:1–13

    Google Scholar 

  29. Zhang J, Zou J, Yang S, Zheng J (2023) An evolutionary algorithmbased on independently evolving sub-problems for multimodal multi-objective optimization. Inf Sci 619:908–929

    Article  Google Scholar 

  30. Peng Y, Ishibuchi H (2021) A diversity-enhanced subset selection framework for multi-modal multi-objective optimization. IEEE Trans Evol Comput 26(5):886–900

  31. Zitzler E, Laumanns M, Thiele L (2001) Spea2: improving the strength pareto evolutionary algorithm. TIK-Report 103

  32. Tian Y, Cheng R, Zhang X, Jin Y (2017) PlatEMO: a MATLAB platform for evolutionary multi-objective optimization. IEEE Comput Intell Mag 12:73–87

    Article  Google Scholar 

  33. Agrawal R, Deb K, Agrawal R (2000) Simulated binary crossover for continuous search space. Complex Syst 9:115–148

    MathSciNet  MATH  Google Scholar 

  34. Ishibuchi H, Pang LM, Shang K (2022) Difficulties in fair performance comparison of multi-objective evolutionary algorithms [research frontier]. IEEE Comput Intell Mag 17(1):86–101

    Article  Google Scholar 

  35. Zhou A, Zhang Q, Jin Y (2009) Approximating the set of pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm. IEEE Trans Evol Comput 13(5):1167–1189. https://doi.org/10.1109/TEVC.2009.2021467

    Article  Google Scholar 

  36. Alcalá-Fdez J, Sánchez L, García S, del Jesus MJ, Ventura S, Garrell JM, Otero J, Romero C, Bacardit J, Rivas VM, Fernández JC, Herrera F (2009) KEEL: a software tool to assess evolutionary algorithms for data mining problems. Soft Comput 13(3):307–318

    Article  Google Scholar 

  37. Zhang J, Cao J, Zhao F (2022) A constrained multi-objective optimization algorithm with two cooperative populations. Memet Comput. https://doi.org/10.1007/s12293-022-00360-1

    Article  Google Scholar 

  38. Wang H, Li X, Hong W, Tang K (2022) Multi-objective approaches to portfolio optimization with market impact costs. Memet Comput 14:1–11. https://doi.org/10.1007/s12293-022-00381-w

    Article  Google Scholar 

  39. Li G, Zhu Z, Ma L, Ma X (2021) Multi-objective memetic algorithm for core-periphery structure detection in complex network. Memet Comput. https://doi.org/10.1007/s12293-021-00342-9

    Article  Google Scholar 

  40. Tian Y, Zhang T, Xiao J, Zhang X, Jin Y (2021) A coevolutionary framework for constrained multiobjective optimization problems. IEEE Trans Evol Comput 25(1):102–116

Download references

Acknowledgements

This work was partly supported by the National Natural Science Foundation of China under Grant No. 62076225.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiying Yang or Wenyin Gong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 4637 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, T., Ming, F., Zhang, H. et al. Multimodal multi-objective optimization with multi-stage-based evolutionary algorithm. Memetic Comp. 15, 377–389 (2023). https://doi.org/10.1007/s12293-023-00399-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12293-023-00399-8

Keywords

Navigation