Skip to main content

Advertisement

Log in

Emotion-aware brain storm optimization

  • Regular Research Paper
  • Published:
Memetic Computing Aims and scope Submit manuscript

Abstract

Βrain storm optimization (BSO) is a swarm-intelligence clustering-based algorithm inspired by the human brainstorming process. Electromagnetism-like mechanism for global optimization (EMO) is a physics-inspired optimization algorithm. In this study we propose a novel hybrid metaheuristic evolutionary algorithm that combines aspects from both BSO and EMO. The proposed algorithm, named EMotion-aware brain storm optimization, is inspired by the attraction–repulsion mechanism of electromagnetism, and it is applied in a new emotion-aware brainstorming context, where positive and negative thoughts produce ideas interacting with each other. Novel contributions include a bi-polar clustering approach, a probabilistic selection operator, and a hybrid evolution process, which improves the ability of the algorithm to avoid local optima and convergence speed. A systematic comparative performance evaluation that includes sensitivity analysis, convergence velocity and dynamic fitness landscape analyses, and scalability assessment was performed using several reference benchmark functions from standard benchmark suites. The results validate the performance advantages of the proposed algorithm over relevant state-of-the-art algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Shi Y (2011) Brain storm optimization algorithm. In: International conference in swarm intelligence. Springer, Berlin, pp 303–309

  2. Birbil Şİ, Fang S-C (2003) An electromagnetism-like mechanism for global optimization. J Glob Optim 25:263–282

    Article  MathSciNet  MATH  Google Scholar 

  3. Cheng S, Shi Y (2019) Brain storm optimization algorithms: concepts, principles and applications. Springer, Berlin

    Book  MATH  Google Scholar 

  4. Cheng S, Qin Q, Chen J, Shi Y (2016) Brain storm optimization algorithm: a review. Artif Intell Rev 46:445–458

    Article  Google Scholar 

  5. Ma L, Cheng S, Shi Y (2020) Enhancing learning efficiency of brain storm optimization via orthogonal learning design. IEEE Trans Syst Man Cybernet Syst 6:66

    Google Scholar 

  6. Zhan Z, Zhang J, Shi Y, Liu H (2012) A modified brain storm optimization. In: 2012 IEEE congress on evolutionary computation. IEEE, pp 1–8

  7. Sun C, Duan H, Shi Y (2013) Optimal satellite formation reconfiguration based on closed-loop brain storm optimization. IEEE Comput Intell Mag 8:39–51

    Article  Google Scholar 

  8. Yang Y, Shi Y, Xia S (2015) Advanced discussion mechanism-based brain storm optimization algorithm. Soft Comput 19:2997–3007

    Article  Google Scholar 

  9. Li J, Duan H (2015) Simplified brain storm optimization approach to control parameter optimization in F/A-18 automatic carrier landing system. Aerosp Sci Technol 42:187–195

    Article  Google Scholar 

  10. Yu Y, Gao S, Wang Y et al (2019) A multiple diversity-driven brain storm optimization algorithm with adaptive parameters. IEEE Access 7:126871–126888

    Article  Google Scholar 

  11. Xu P, Luo W, Lin X et al (2021) BSO20: efficient brain storm optimization for real-parameter numerical optimization. Complex Intell Syst 7:2415–2436. https://doi.org/10.1007/s40747-021-00404-y

    Article  Google Scholar 

  12. Cao Z, Hei X, Wang L et al (2015) (2015) An improved brain storm optimization with differential evolution strategy for applications of ANNs. Math Probl Eng 6:66

    Google Scholar 

  13. Song Z, Peng J, Li C, Liu PX (2017) A simple brain storm optimization algorithm with a periodic quantum learning strategy. IEEE Access 6:19968–19983

    Article  Google Scholar 

  14. Duan H, Li C (2015) Quantum-behaved brain storm optimization approach to solving Loney’s solenoid problem. IEEE Trans Magn 51:1–7

    Article  Google Scholar 

  15. Jia Z, Duan H, Shi Y (2016) Hybrid brain storm optimisation and simulated annealing algorithm for continuous optimisation problems. Int J Bio-Inspir Comput 8:109–121

    Article  Google Scholar 

  16. Tuba E, Dolicanin E, Tuba M (2017) Chaotic brain storm optimization algorithm. In: International conference on intelligent data engineering and automated learning. Springer, Berlin, pp 551–559

  17. Yu Y, Gao S, Cheng S et al (2018) CBSO: a memetic brain storm optimization with chaotic local search. Memet Comput 10:353–367

    Article  Google Scholar 

  18. Wang Y, Gao S, Yu Y, Xu Z (2019) The discovery of population interaction with a power law distribution in brain storm optimization. Memet Comput 11:65–87

    Article  Google Scholar 

  19. Wu Q, Zhang C, Gao L (2018) A modified electromagnetism-like mechanism algorithm with pattern search for global optimisation. Int J Comput Sci Eng 16:430–440

    Google Scholar 

  20. El-Hana Bouchekara HR, Abido MA, Chaib AE (2016) Optimal power flow using an improved electromagnetism-like mechanism method. Electr Power Components Syst 44:434–449

    Article  Google Scholar 

  21. Ali M, Golalikhani M (2010) An electromagnetism-like method for nonlinearly constrained global optimization. Comput Math Appl 60:2279–2285

    Article  MathSciNet  MATH  Google Scholar 

  22. Miyajima H, Shigei N, Miyajima H (2015) Performance comparison of hybrid electromagnetism-like mechanism algorithms with descent method. J Artif Intell Soft Comput Res 5:271–282

    Article  MATH  Google Scholar 

  23. Le DT, Bui D-K, Ngo TD et al (2019) A novel hybrid method combining electromagnetism-like mechanism and firefly algorithms for constrained design optimization of discrete truss structures. Comput Struct 212:20–42

    Article  Google Scholar 

  24. Gálvez J, Cuevas E, Avalos O et al (2018) Electromagnetism-like mechanism with collective animal behavior for multimodal optimization. Appl Intell 48:2580–2612

    Article  Google Scholar 

  25. Sels V, Vanhoucke M (2014) A hybrid Electromagnetism-like Mechanism/tabu search procedure for the single machine scheduling problem with a maximum lateness objective. Comput Ind Eng 67:44–55

    Article  Google Scholar 

  26. Wang Q, Zeng J, Song W (2010) A new electromagnetism-like algorithm with chaos optimization. In: 2010 International conference on computational aspects of social networks. IEEE, pp 535–538

  27. Hosseinzadeh Y, Taghizadieh N, Jalili S (2016) Hybridizing electromagnetism-like mechanism algorithm with migration strategy for layout and size optimization of truss structures with frequency constraints. Neural Comput Appl 27:953–971

    Article  Google Scholar 

  28. Jalili S, Hosseinzadeh Y (2017) Design of pin jointed structures under stress and deflection constraints using hybrid electromagnetism-like mechanism and migration strategy algorithm. Period Polytechn Civ Eng 61:780–793

    Google Scholar 

  29. Oliva D, Cuevas E (2017) An EMO improvement: opposition-based electromagnetism-like for global optimization. In: Advances and applications of optimised algorithms in image processing. Springer, Berlin, pp 159–178

  30. Wu G, Mallipeddi R, Suganthan PN (2017) Problem definitions and evaluation criteria for the CEC 2017 competition on constrained real-parameter optimization. National University of Defense Technology, Changsha, Hunan, PR China and Kyungpook National University, Daegu, South Korea and Nanyang Technological University, Singapore, Technical Report

  31. Gao S, Yu Y, Wang Y et al (2021) Chaotic local search-based differential evolution algorithms for optimization. IEEE Trans Syst Man Cybernet Syst 51:3954–3967. https://doi.org/10.1109/TSMC.2019.2956121

    Article  Google Scholar 

  32. Mashwani WK, Shah H, Kaur M et al (2021) Large-scale bound constrained optimization based on hybrid teaching learning optimization algorithm. Alex Eng J 60:6013–6033. https://doi.org/10.1016/j.aej.2021.04.002

    Article  Google Scholar 

  33. Abadi MQH, Rahmati S, Sharifi A, Ahmadi M (2021) HSSAGA: Designation and scheduling of nurses for taking care of COVID-19 patients using novel method of hybrid salp swarm algorithm and genetic algorithm. Appl Soft Comput 108:107449. https://doi.org/10.1016/j.asoc.2021.107449

    Article  Google Scholar 

  34. Lynn N, Suganthan PN (2017) Ensemble particle swarm optimizer. Appl Soft Comput 55:533–548. https://doi.org/10.1016/j.asoc.2017.02.007

    Article  Google Scholar 

  35. Cheng Z, Wang J, Zhang M et al (2019) Improvement and application of adaptive hybrid cuckoo search algorithm. IEEE Access 7:145489–145515. https://doi.org/10.1109/ACCESS.2019.2944981

    Article  Google Scholar 

  36. Osuna-Enciso V, Cuevas E, Morales Castañeda B (2022) A diversity metric for population-based metaheuristic algorithms. Inf Sci 586:192–208. https://doi.org/10.1016/j.ins.2021.11.073

    Article  Google Scholar 

  37. Ting TO, Yang X-S, Cheng S, Huang K (2015) Hybrid metaheuristic algorithms: past, present, and future. In: Yang X-S (ed) Recent advances in swarm intelligence and evolutionary computation. Springer, Cham, pp 71–83

    Chapter  Google Scholar 

  38. Birbil Şİ, Fang S-C, Sheu R-L (2004) On the convergence of a population-based global optimization algorithm. J Glob Optim 30:301–318. https://doi.org/10.1007/s10898-004-8270-3

    Article  MathSciNet  MATH  Google Scholar 

  39. Ntakolia C, Iakovidis DK (2021) A swarm intelligence graph-based pathfinding algorithm (SIGPA) for multi-objective route planning. Comput Oper Res 133:105358. https://doi.org/10.1016/j.cor.2021.105358

    Article  MathSciNet  MATH  Google Scholar 

  40. McGann M (2018) How brain, body, and environment are entangled in thinking and learning. Psychology and the study of education: critical perspectives on developing theories

  41. Yibin X (2019) Research on the interaction between quantum entanglement and thinking consciousness. Clust Comput 22:6599–6607

    Article  Google Scholar 

  42. Yang Y, Wang Y, Yuan X, Yin F (2012) Hybrid chaos optimization algorithm with artificial emotion. Appl Math Comput 218:6585–6611. https://doi.org/10.1016/j.amc.2011.09.028

    Article  MATH  Google Scholar 

  43. Shahid AH, Singh MP (2020) A novel approach for coronary artery disease diagnosis using hybrid particle swarm optimization based emotional neural network. Biocybernet Biomed Eng 40:1568–1585. https://doi.org/10.1016/j.bbe.2020.09.005

    Article  Google Scholar 

  44. Zhao F, Hu X, Wang L et al (2022) A reinforcement learning brain storm optimization algorithm (BSO) with learning mechanism. Knowl-Based Syst 235:107645. https://doi.org/10.1016/j.knosys.2021.107645

    Article  Google Scholar 

  45. Liang J, Qu B, Suganthan P, Hernández-Díaz AG (2013) Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Nanyang Technological University, Singapore, Technical Report 201212:281–295

  46. Wang M, Li B, Zhang G, Yao X (2017) Population evolvability: dynamic fitness landscape analysis for population-based metaheuristic algorithms. IEEE Trans Evol Comput 22:550–563

    Article  Google Scholar 

  47. Jamil M, Yang X-S (2013) A literature survey of benchmark functions for global optimization problems. Int J Math Model Numer Optim 4:141–149

    MATH  Google Scholar 

  48. Qu B, Liang J, Wang Z et al (2016) Novel benchmark functions for continuous multimodal optimization with comparative results. Swarm Evol Comput 26:23–34

    Article  Google Scholar 

  49. Tsoulos IG, Stavrakoudis A (2010) Enhancing PSO methods for global optimization. Appl Math Comput 216:2988–3001. https://doi.org/10.1016/j.amc.2010.04.011

    Article  MathSciNet  MATH  Google Scholar 

  50. Hussain K, Salleh MNM, Cheng S, Naseem R (2017) Common benchmark functions for metaheuristic evaluation: a review. Int J Inform Vis 1:218–223

    Google Scholar 

  51. Sun Y, Kirley M, Halgamuge SK (2017) A recursive decomposition method for large scale continuous optimization. IEEE Trans Evol Comput 22:647–661

    Article  Google Scholar 

  52. Carrasco J, García S, Rueda M et al (2020) Recent trends in the use of statistical tests for comparing swarm and evolutionary computing algorithms: Practical guidelines and a critical review. Swarm Evol Comput 54:100665

    Article  Google Scholar 

  53. Zhan Z-H, Wang Z-J, Jin H, Zhang J (2020) Adaptive distributed differential evolution. IEEE Trans Cybernet 50:4633–4647. https://doi.org/10.1109/TCYB.2019.2944873

    Article  Google Scholar 

  54. Xia X, Gui L, Yu F et al (2020) Triple archives particle swarm optimization. IEEE Trans Cybernet 50:4862–4875. https://doi.org/10.1109/TCYB.2019.2943928

    Article  Google Scholar 

  55. Jiang Y, Zhan Z-H, Tan KC, Zhang J (2023) Knowledge learning for evolutionary computation. IEEE Trans Evol Comput. https://doi.org/10.1109/TEVC.2023.3278132

    Article  Google Scholar 

  56. Zhan Z-H, Li J-Y, Kwong S, Zhang J (2022) Learning-aided evolution for optimization. IEEE Trans Evol Comput. https://doi.org/10.1109/TEVC.2022.3232776

    Article  Google Scholar 

  57. Ntakolia C, Kalimeri A, Coletsos J (2021) A two-level hierarchical framework for air traffic flow management. Int J Decis Support Syst 4:271–292. https://doi.org/10.1504/IJDSS.2021.119125

    Article  Google Scholar 

  58. Chen Z-G, Zhan Z-H, Kwong S, Zhang J (2022) Evolutionary computation for intelligent transportation in smart cities: a survey [review article]. IEEE Comput Intell Mag 17:83–102. https://doi.org/10.1109/MCI.2022.3155330

    Article  Google Scholar 

  59. Ntakolia C, Moustakidis S, Siouras A (2023) Autonomous path planning with obstacle avoidance for smart assistive systems. Expert Syst Appl 213:119049. https://doi.org/10.1016/j.eswa.2022.119049

    Article  Google Scholar 

  60. Zhan Z-H, Shi L, Tan KC, Zhang J (2022) A survey on evolutionary computation for complex continuous optimization. Artif Intell Rev 55:59–110. https://doi.org/10.1007/s10462-021-10042-y

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Shi Cheng for providing us the source codes of the work presented in [5]. We would also like to thank the authors for making available the source codes (https://www.mathworks.com/matlabcentral/fileexchange/70471-an-understanding-course-on-bso, https://www.mathworks.com/matlabcentral/fileexchange/72358-electromagnetism-like-mechanism-optimization-algorithm-em?s_tid=prof_contriblnk) of GA and PSO, EMO and IEM, and BSO, respectively, used in this study. This work has been co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH—CREATE—INNOVATE (project code: T1EDK-02070).

Author information

Authors and Affiliations

Authors

Contributions

CN: Conceptualization, Methodology, Software, Formal analysis, Data curation, Writing—Original draft preparation, Visualization, Writing—Reviewing and Editing, Validation; D-CK: Software, Formal analysis, Writing—Original draft preparation; DI: Supervision, Writing—Reviewing and Editing, Funding acquisition.

Corresponding author

Correspondence to Charis Ntakolia.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ntakolia, C., Koutsiou, DC.C. & Iakovidis, D.K. Emotion-aware brain storm optimization. Memetic Comp. 15, 405–450 (2023). https://doi.org/10.1007/s12293-023-00400-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12293-023-00400-4

Keywords

Navigation