Skip to main content
Log in

Using real options theory to a country’s environmental policy: considering the economic size and growth

  • Original Paper
  • Published:
Operational Research Aims and scope Submit manuscript

Abstract

The aim of this paper is to consider how the economic size and growth of a country affect its environmental policy under uncertainty in a real options framework. In contrast to the prior literature, this work explicitly takes into account the link between the development of an economy and the pollution state of the environment. Policy implementation is found to be determined by the levels of the economic size and the disutility of the pollution. We illustrate how to apply our method to the implementation of an environmental policy in an actual situation and show with numerical calculations that the optimal threshold is sensitive only to the subjective time preference, while the expected implementation time is affected by other parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. It can be argued that the dynamics of the GDP is influenced by the environmental policy. The assumption is made because we focus on the analysis of how each parameter affects the policy timing, not the effect of the policy on the dynamics of GDP. Also, as we see in the following numerical results, the policy implementation is less affected by μ Y and σ Y . Therefore, the assumption would not lower the contribution of the paper.

  2. Here N and A indicate the state before and after the adoption of the new policy, respectively.

  3. Factor 10 is the environmental policy originally proposed Schmidt-Bleek. See, for example, Schmidt-Bleek (1999) and Robèrt et al. (2002) for more detail.

  4. We do not calibrate μθ or σθ with the market prices of CO2 emission since the data are insufficient.

  5. Pindyck (2006) insist in page 48 that “with discount rates of 4% or more, it would be very hard to justify almost any policy that imposes costs today but yields benefits only 50 or a 100 years in the future”.

  6. If ϕ is the risk-adjusted discount rate, it must be that

    $$ {\text{Price}}\;{\text{of}}\;{\text{unit}}\;{\text{pollution = }}\mathbb{E}\left[ {\int\limits_{0}^{\infty } {{\text{e}}^{{ - \phi t}} \theta _{t} (1 \times {\text{e}}^{{ - \delta t}} )\left. {{\text{d}}t} \right|} \theta _{0} } \right] = {\frac{{\theta _{0} }}{{\phi + \delta - \mu \theta }}}. $$

References

  • Azomahou T, Laisney F, Nguyen VP (2006) Economic development and CO2 emissions: a nonparametric panel approach. J Public Econ 90:1347–1363

    Article  Google Scholar 

  • Barrieu P, Chesney M (2003) Optimal timing for an environmental policy in a strategic framework. Environ Model Assess 8:149–163

    Article  Google Scholar 

  • Bengochea-Morancho A, Higón-Tamarit F, Martínez-Zarzoso I (2001) Economic growth and CO2 emissions in the European Union. Environ Resour Econ 19:165–172

    Article  Google Scholar 

  • Cropper ML, Oates WE (1992) Environmental economics: a survey. J Econ Lit 30:675–740

    Google Scholar 

  • de Bruyn SM, van den Bergh JCJM, Opschoor JB (1998) Economic growth and emissions: reconsidering the empirical basis of environmental Kuznets curves. Ecol Econ 25:161–175

    Article  Google Scholar 

  • Dixit AK, Pindyck RS (1994) Investment under uncertainty. Princeton University Press, New Jersey

    Google Scholar 

  • Insley MC (2003) On the option to invest in pollution control under a regime of tradable emissions allowances. Can J Econ 36:860–883

    Article  Google Scholar 

  • Isik M (2004) Incentives for technology adoption under environmental policy uncertainty: implications for green payment programs. Environ Resour Econ 27:247–263

    Article  Google Scholar 

  • Janzen HH (2004) Carbon cycling in earth systems—a soil science perspective. Agricult Ecosyst Environ 104:399–417

    Article  Google Scholar 

  • Michailidis A, Mattas K (2007) Using real options theory to dam investment analysis: an application of binomial option pricing model. Water Resour Manag 21:1717–1733

    Article  Google Scholar 

  • Ohyama A, Tsujimura M (2006) Political measures for strategic environmental policy with external effects. Environ Resour Econ 35:109–135

    Article  Google Scholar 

  • Ohyama A, Tsujimura M (2008) Induced effects and technological innovation with strategic environmental policy. Eur J Oper Res 190:834–854

    Article  Google Scholar 

  • Pindyck RS (2000) Irreversibilities and the timing of environmental policy. Resour Energy Econ 22:233–259

    Article  Google Scholar 

  • Pindyck RS (2002) Optimal timing problems in environmental economics. J Econ Dyn Control 26:1677–1697

    Article  Google Scholar 

  • Pindyck RS (2006) Uncertainty in environmental economics. Rev Environ Econ Policy 1:45–65

    Article  Google Scholar 

  • Robèrt K-H, Schmidt-Bleek B, Aloisi de Larderel J, Basile G, Jansen JL, Kuehr R, Price Thomas P, Suzuki M, Hawken P, Wackernagel M (2002) Strategic sustainable development—selection, design and synergies of applied tools. J Clean Prod 10:197–214

    Article  Google Scholar 

  • Schmidt-Bleek F (1999) The factor 10/MIPS-concept: bridging ecological, economic, and social dimensions with sustainability indicators. The United Nations University, Zero Emissions Forum (ZEN-EN-1999-3-D)

  • Selden TM, Song DS (1994) Environmental quality and development: is there a Kuznets curve for air pollution emissions? J Environ Econ Manag 27:147–162

    Article  Google Scholar 

  • Stern DI, Common MS, Barbier EB (1996) Economic growth and environmental degradation: a critique of the environmental Kuznets curve. World Dev 24:1151–1160

    Article  Google Scholar 

  • Wirl F (2006) Pollution thresholds under uncertainty. Environ Dev Econ 11:493–506

    Article  Google Scholar 

  • Wirl F (2007) Energy prices and carbon taxes under uncertainty about global warming. Environ Resour Econ 36:313–340

    Article  Google Scholar 

  • Zhao J (2003) Irreversible abatement investment under cost uncertainties: tradable emission permits and emissions charges. J Public Econ 87:2765–2789

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Masaaki Kijima and seminar participants at Kyoto University for their helpful comments on an earlier version of the paper. The authors also appreciate the comments by anonymous referees that greatly enhanced the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsuyuki Ohyama.

Additional information

The first-named author is grateful to the financial support by the Japanese Ministry of Education, Science, Sports, and Culture (MEXT), “Special Coordination Funds for Promoting Science and Technology”.

Appendices

Appendix 1: Proof of Proposition 1

First, we calculate W A  = W A (θ, Y, M), the value function for the “adopt” region \({\mathcal{A}} \subset {\bf R}R^2\) \(((\theta, Y) \in {\mathcal{A}} \Leftrightarrow \beta_t = \beta_A).\) When M t follows the dynamics (2), we have for t > 0

$$ M_t = \hbox{e}^{-\delta t} M_0 + \beta_A \int\limits_0^t \hbox{e}^{\delta(s-t)} Y_s^{\xi} \hbox{d} s. $$

Then, substituting it into (4) and applying Fubini’s theorem, we can directly calculate the value function as

$$ \begin{aligned} W_A &= {\mathbb E}\left[\left.\int\limits_0^{\infty} (-\theta_t M_t) \hbox{e}^{-\phi t} \hbox{d} t\right|Y_0=Y,\;\theta_0=\theta,\;M_0=M\right] \\ &= - {\mathbb E}_0 \left[\int\limits_0^{\infty} \theta_t \left(\hbox{e}^{-\delta t}M_0 + \int\limits_0^t \hbox{e}^{\delta (s - t)}\beta_A Y_s^{\xi} \hbox{d} s \right) \hbox{e}^{- \phi t} \hbox{d} t\right]\\& = -\frac{\theta M}{\phi + \delta - \mu_{\theta}}- \beta_A \int\limits_0^{\infty} \left(\int\limits_0^t \hbox{e}^{\delta s} {\mathbb E}_0 \left[\theta_t Y_s^{\xi}\right] \hbox{d} s\right) \hbox{e}^{-(\phi + \delta) t} \hbox{d} t.\\ \end{aligned}$$
(12)

Using the tower property of conditional expectations (t ≥ s), we have

$$ {\mathbb E}_0[\theta_t Y_s^{\xi}]={\mathbb E}_0[\theta_s\hbox{e}^{\mu_{\theta}(t-s)}Y_s^{\xi}] =\theta Y^{\xi}\hbox{e}^{\mu_{\zeta}s}\hbox{e}^{\mu_{\theta}(t-s)} =\theta Y^{\xi}\hbox{e}^{\left(\xi\mu_Y+\rho\xi\sigma_{\theta}\sigma_Y+\frac{1}{2} \xi(\xi-1)\sigma_Y^2\right)s}\hbox{e}^{\mu_{\theta} t}. $$

Thus, we can derive the third term on the right-hand side of Eq. 12 as

$$ \begin{aligned} & \int\limits_0^{\infty} \left(\int\limits_0^t\hbox{e}^{\delta s}{\mathbb E}_0\left[\theta_t Y_s^{\xi}\right] \hbox{d} s\right)\hbox{e}^{- (\phi + \delta) t} \hbox{d} t \\ & = \theta Y^{\xi} \int\limits_0^{\infty}\left(\int\limits_0^t \hbox{e}^{\left( \xi \mu_Y + \rho \xi \sigma_{\theta} \sigma_Y + \frac{1}{2} \xi (\xi - 1)\sigma_Y^2 + \delta \right) s} \hbox{d} s\right) \hbox{e}^{- (\phi + \delta - \mu_{\theta}) t} \hbox{d} t \\ & = \frac{\theta Y^{\xi}}{\xi \mu_Y + \rho \xi \sigma_{\theta} \sigma_Y + \frac{1}{2} \xi (\xi - 1) \sigma_Y^2 + \delta} \\ & \times \int\limits_0^{\infty} \left(\hbox{e}^{\left(\xi \mu_Y + \rho \xi \sigma_{\theta} \sigma_Y + \frac{1}{2} \xi (\xi - 1) \sigma_Y^2 + \delta\right) t} - 1\right) \hbox{e}^{- (\phi + \delta - \mu_{\theta}) t} \hbox{d} t\\ & = \frac{\theta Y^{\xi}}{(\phi + \delta -\mu_{\theta}) ( \phi - \mu_{\theta} - \xi \mu_Y - \rho \xi \sigma_{\theta} \sigma_Y -\frac{1}{2} \xi (\xi - 1) \sigma_Y^2)}.\\ \end{aligned} $$

As a result, we obtain the value function (8).

Next, we consider the case of the “nonadopt” region. Let W N  = W N (θ, Y, M) denote the value function for the nonadopt region \(((\theta, Y,) \in {\bf R}R^2 \setminus {\mathcal{A}} \Leftrightarrow \beta_t = \beta_N).\) W N (θ,Y, M) must satisfy the Bellman equation

$$ \begin{aligned} \phi W_N & = - \theta M + (\beta_N Y^{\xi} - \delta M) \frac{\partial W_N}{\partial M} + \mu_{\theta} \theta \frac{\partial W_N}{\partial \theta} +\mu_Y Y \frac{\partial W_N}{\partial Y}\\ &+\frac{1}{2} \sigma_{\theta}^2 \theta^2 \frac{\partial^2 W_N} {\partial \theta^2} + \rho \sigma_{\theta} \sigma_Y \theta Y \frac{\partial^2 W_N}{\partial \theta \partial Y} + \frac{1}{2} \sigma_Y^2 Y^2 \frac{\partial^2 W_N}{\partial Y^2}.\\ \end{aligned} $$
(13)

Now we conjecture the solution of the above ODE as

$$ W_N = a (\theta Y^{\xi})^{\gamma } + b \theta M + c \theta Y^{\xi}, $$

where a, b, c and γ are some constants to be derived. Substituting (13) into (14), we have

$$ \begin{aligned} & \phi [ a (\theta Y^{\xi})^{\gamma} + b \theta M + c \theta Y^{\xi}]\\ = & - \theta M + (\beta_N Y^{\xi} - \delta M) c \theta\\ & + \mu_{\theta} \theta ( a \gamma \theta^{\gamma - 1} Y^{\gamma \xi} + c M + d Y^{\xi}) + \mu_Y Y (a \gamma \xi \theta^{\gamma} Y^{\gamma \xi - 1} + b + d \xi \theta Y^{\xi - 1})\\ & + \frac{1}{2} a \sigma_{\theta}^2 \theta^2 \gamma (\gamma - 1) \theta^{\gamma - 2} Y^{\gamma \xi} + \rho \sigma_{\theta} \sigma_Y \theta Y (a \gamma^2 \xi \theta^{\gamma - 1} Y^{\gamma \xi - 1} + d \xi Y^{\xi - 1})\\ & + \frac{1}{2} \sigma_Y^2 Y^2 \left[ a \gamma \xi (\gamma \xi - 1) \theta^{\gamma} Y^{\gamma \xi - 2} + \frac{1}{2} \xi (\xi - 1) d \theta Y^{\xi - 2} \right].\\ \end{aligned} $$
(14)

By setting the coefficient of each term to be zero, we obtain the constants a to γ.

First, we deal with the term (Y θξ)γ in Eq. (14). Setting the coefficient of (Y θξ)γ to be zero, we obtain

$$\frac{1}{2} (\sigma_{\theta}^2 + 2 \rho \xi \sigma_Y \sigma_{\theta} + \xi^2 \sigma_Y^2) \gamma^2 - \left[ \frac{1}{2} (\sigma_{\theta}^2 + \xi \sigma_Y^2) - (\mu_{\theta} + \xi \mu_Y) \right] \gamma - \phi=0 $$

By the standard real options arguments, γ must be greater than 1. Hence, we have

$$ \gamma = \frac{\frac{1}{2} (\sigma_{\theta}^2 + \xi \sigma_Y^2) - (\mu_{\theta} + \xi \mu_Y) + \sqrt{\left[\frac{1}{2} (\sigma_{\theta}^2 + \xi \sigma_Y^2) - (\mu_{\theta} +\xi \mu_Y) \right]^2 + 2 \phi (\sigma_{\theta}^2 + 2 \rho \xi \sigma_Y \sigma_{\theta} + \xi^2 \sigma_Y^2)}}{\sigma_{\theta}^2 + 2 \rho \xi \sigma_Y \sigma_{\theta} + \xi^2 \sigma_Y^2}. $$

Second, calculating the term of θM yields

$$ b = -\frac{1}{\phi + \delta - \mu_{\theta}}. $$

Third, for the term θY ξ, we get

$$ c = \frac{\beta_N}{(\phi + \delta - \mu_{\theta}) (\phi - \mu_{\zeta})}. $$

Consequently, we obtain

$$ W_N = a (\theta Y^{\xi})^{\gamma} - \frac{\theta M}{\phi + \delta - \mu_{\theta}} - \frac{\beta_N \theta Y^{\xi}}{(\phi + \delta - \mu_{\theta}) (\phi - \mu_{\zeta})}. $$
(15)

We still have two unknown parameters, the constant a and the threshold. They can be derived by the two boundary conditions, i.e., the value-matching and the smooth-pasting conditions.

By the definition of \({\mathcal{A}},\) we know that when (θ t , Y t ) first reaches \(\partial {\mathcal{A}},\) the policy maker will exercise his or her option to adopt the policy. The value-matching condition says that W N B , Y B , M) = W A B , Y B , M) − K for \((\theta_B, Y_B) \in \partial {\mathcal{A}}.\) Therefore, we derive

$$ a (\zeta_B)^{\gamma} - \frac{\beta_N \zeta_B}{(\phi + \delta - \mu_{\theta})(\phi - \mu_{\zeta})} = - \frac{\beta_A \zeta_B}{(\phi + \delta - \mu_{\theta})(\phi - \mu_{\zeta})}-K, $$

where ζ B : = θ B Y ξ B . Solving with respect to a, we obtain

$$ a = \frac{1}{(\zeta_B)^{\gamma}} \left( \frac{(\beta_N - \beta_A) \zeta_B}{(\phi + \delta - \mu_{\theta}) (\phi - \mu_{\zeta})} - K \right). $$

The smooth-pasting condition implies that W N is maximized with respect to the boundary condition ζ B . In this case, we get

$$ \frac{(1 - \gamma) (\beta_N - \beta_A)}{(\phi + \delta - \mu_{\theta}) (\phi - \mu_{\zeta})} (\zeta_B)^{-\gamma} + \gamma K (\zeta_B)^{- \gamma - 1} = 0. $$

We finally obtain

$$ \zeta_B = \frac{\gamma (\phi + \delta - \mu_{\theta}) (\phi - \mu_{\zeta}) K}{(\gamma - 1) (\beta_N - \beta_A)} $$
(16)

and

$$ a = \left(\frac{\gamma - 1}{K}\right)^{\gamma - 1} \left( \frac{(\beta_N - \beta_A)}{\gamma (\phi + \delta - \mu_{\theta}) (\phi - \mu_{\zeta})} \right)^{\gamma}. $$
(17)

Substituting (16) and (17) into (15), we obtain (7). \(\hfill\square\)

Appendix 2: Proof of Corollary 1

Note that γ satisfies the characteristic equation as

$$ \frac{1}{2} (\underbrace{\sigma_{\theta}^2 + 2 \rho \xi \sigma_Y \sigma_{\theta} + \xi^2 \sigma_Y^2}_{= \sigma_{\zeta}^2}) \gamma^2 - \left[\underbrace{\frac{1}{2} (\sigma_{\theta}^2 + \xi \sigma_Y^2) - (\mu_{\theta} + \xi \mu_Y)}_{= \mu_{\zeta} - \frac{1}{2} \sigma_{\zeta}^2} \right] \gamma - \phi=0. $$
(18)

Then, by rearranging (18), we have the relation

$$ \frac{\gamma}{\gamma - 1} (\phi - \mu_{\zeta}) = \frac{1}{2} \sigma_{\zeta}^2 \gamma + \phi, $$

and

$$ \zeta_B = \left(\frac{1}{2} \sigma_{\zeta}^2 \gamma + \phi \right) (\phi + \delta - \mu_{\theta}) \frac{K}{\beta_N - \beta_A}. $$
(19)

The derivative with respect to ϕ From (19), we calculate

$$ \begin{aligned} \frac{\partial \zeta_B}{\partial \phi} = & \frac{K} {\beta_{N}-\beta_{A}} \frac{\partial}{\partial \phi} \left\{ \left(\frac{1}{2}\sigma^{2}_{\zeta}\gamma+\phi \right) (\phi+\delta-\mu_{\theta}) \right\} \\ = & \frac{K}{\beta_{N}-\beta_{A}} \left\{ \left(\frac{1}{2}\sigma^{2}_{\zeta} \frac{\partial \gamma} {\partial \phi} \right) (\phi + \delta - \mu_{\theta})+\left( \frac{1}{2}\sigma^{2}_{\zeta}\gamma +\phi\right) \right\}.\\ \end{aligned} $$

Since γ is a positive root of (18), we verify that \(\frac{\partial \gamma}{\partial \phi} > 0\) , and that ζ B is increasing in ϕ.

The derivative with respect to μ Y : We have

$$ \frac{\partial \zeta_B}{\partial \mu_Y} =\frac{1} {2}\sigma^{2}_{\zeta} (\phi+\delta-\mu_{\theta}) \frac{K} {\beta_{N}-\beta_{A}} \frac{\partial \gamma}{\partial \mu_Y}. $$

Now the second inequality of (9) readily follows from noting that \(\frac{\partial \gamma}{\partial \mu_Y} < 0.\)

The derivative with respect to μθ: Eq. (19) yields

$$ \frac{\partial \zeta_B}{\partial \mu_{\theta}} = \frac{1}{2}\sigma^{2}_{\zeta} (\phi+\delta-\mu_{\theta}) \frac{K}{\beta_{N}-\beta_{A}} \frac{\partial \gamma}{\partial \mu_{\theta}} - \left(\frac{1}{2} \sigma_{\zeta}^2 \gamma + \phi \right) \frac{K}{\beta_N - \beta_A}. $$

Since \( {\frac{{\partial \gamma }}{{\partial \mu _{\theta } }}} < 0, \) we have the third inequality of (9).

Inequalities in (10): When the correlation coefficient ρ is positive, we observe that

$$ \frac{\partial \gamma}{\partial \sigma_Y} > 0 \quad \hbox{and} \quad \frac{\partial \gamma}{\partial \sigma_{\theta}} > 0. $$

By a similar procedure to the above, we get (10).\( \square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishide, K., Ohyama, A. Using real options theory to a country’s environmental policy: considering the economic size and growth. Oper Res Int J 9, 229–250 (2009). https://doi.org/10.1007/s12351-009-0056-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12351-009-0056-4

Keywords

Navigation