Abstract
This paper proposes a new method to measure economic inefficiency of decision making units based on the calculation of the least distance to the Pareto-efficient frontier in data envelopment analysis. While all previously published approaches that have dealt with the problem of determining least distances to the efficient frontier are focus on exclusively technical inefficiency, the new methodology opens the door to applications of this approach when market prices, together with inputs and outputs, are available. Finally, the paper empirically illustrates the new method using recent data on the mandarins’ production in a Spanish eastern province.


Similar content being viewed by others
Notes
In this paper, we assume VRS. Regarding Constant Returns to Scale (CRS), it is worth mentioning that it could be considered as being meaningless from an entrepreneur’s point of view when the aim is to measure profit inefficiency (see Färe et al. 2007, p. 218). It is due to the fact that the CRS hypothesis always implies either unbounded profit or zero maximal profit.
Luenberger (1992) introduced the concepts of benefit function and shortage function. In particular, the shortage function measures the distance in the direction of a vector g of a production plan from the boundary of the production possibility set, i.e., the shortage function measures the amount by which a specific plan is short of reaching the frontier of the technology. A few years later, Chambers et al. (1998) redefined the shortage function as a technical inefficiency measure, introducing the Directional Distance Function.
For the norm \(\left\| {\,.\,} \right\|_{p}\) on \(R^{g}\), the dual norm \(\left\| {\,.\,} \right\|_{q}\) on \(R^{g}\) is defined as \(\left\| \varvec{z} \right\|_{q} = \mathop {\hbox{max} }\nolimits_{{\left\| \varvec{w} \right\|_{p} = 1}} \left\{ {\sum\nolimits_{j = 1}^{g} {z_{j} w_{j} } } \right\}\) (see, for example, Mangasarian 1999).
The commensurability condition establishes that given \(E_{T}\), a measure of technical efficiency defined over the production possibility set T, the measure \(E_{T}\) satisfies the commensurability condition if for all \(m \times s\) positive diagonal matrices L, we have that \(E_{T} \left( {\varvec{x},\varvec{y}} \right) = E_{LT} \left( {L\left( {\varvec{x},\varvec{y}} \right)} \right)\).
Another approach where the technical inefficiency component incorporates information on the market through the market prices is that by Cooper et al. (1999). These authors focused their interest on the traditional difference-form to measure profit inefficiency. To decompose it, Cooper et al. (1999) proposed the technical component as the sum of the slacks obtained by means of the original additive model (Charnes et al. 1985), but weighted with market prices. However, the original additive model generates the furthest targets on the strongly efficient frontier instead of the closest ones, as we seek.
In the same context of the data associated with Table 1, Let us suppose that \(\left( {\varvec{c},\varvec{r}} \right) = \left( {1,3} \right)\). Then, \(PI_{1} \left( {\varvec{x}_{A} ,\varvec{y}_{A} ,\varvec{c},\varvec{r},T} \right) = \frac{{\left| {3 \cdot \left( {3 - 2} \right)} \right| + \left| {\left( {1 - 3} \right)} \right|}}{{\left\| {\left( {1,3 \cdot 2} \right)} \right\|_{\infty } }} = \frac{5}{6}\). However, the feasible point \(\left( {3,2} \right)\) is dominated, in the sense of Pareto, by unit A and presents a profit inefficiency equals to \(PI_{1} \left( {3,2,\varvec{c},\varvec{r},T} \right) = \frac{{\left| {3 \cdot \left( {3 - 2} \right)} \right| + \left| {\left( {3 - 3} \right)} \right|}}{{\left\| {\left( {3,3 \cdot 2} \right)} \right\|_{\infty } }} = \frac{3}{6} < \frac{5}{6}.\)
References
Amirteimoori A, Kordrostami S (2010) A Euclidean distance-based measure of efficiency in data envelopment analysis. Optimization 59:985–996
Ando K, Kai A, Maeda Y, Sekitani K (2012) Least distance based inefficiency measures on the Pareto-efficient frontier in DEA. J Oper Res Soc Japan 55:73–91
Ando K, Minamide M, Sekitani K (2017) Monotonicity of minimum distance inefficiency measures for data envelopment analysis. Eur J Oper Res 260(1):232–243
Aparicio J, Pastor JT (2013) A well-defined efficiency measure for dealing with closest targets in DEA. Appl Math Comput 219:9142–9154
Aparicio J, Pastor JT (2014a) On how to properly calculate the Euclidean distance-based measure in DEA. Optimization 63(3):421–432
Aparicio J, Pastor JT (2014b) Closest targets and strong monotonicity on the strongly efficient frontier in DEA. Omega 44:51–57
Aparicio J, Ruiz JL, Sirvent I (2007) Closest targets and minimum distance to the Pareto-efficient frontier in DEA. J Prod Anal 28:209–218
Aznar JA, Perez JC, Galdeano E (2015) Analisis del sector citricola español. Ed. Cajamar Caja Rural. (in Spanish)
Baek C, Lee J (2009) The relevance of DEA benchmarking information and the least-distance measure. Math Comput Model 49:265–275
Banker RD, Charnes A, Cooper WW (1984) Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag Sci 30:1078–1092
Briec W (1997) Minimum distance to the complement of a convex set: duality result. J Optim Theory Appl 93(2):301–319
Briec W (1998) Hölder distance function and measurement of technical efficiency. J Prod Anal 11:111–131
Briec W, Leleu H (2003) Dual representations of non-parametric technologies and measurement of technical efficiency. J Prod Anal 20:71–96
Briec W, Lemaire B (1999) Technical efficiency and distance to a reverse convex set. Eur J Oper Res 114:178–187
Briec W, Lesourd JB (1999) Metric distance function and profit: some duality results. J Optim Theory Appl 101(1):15–33
Chambers RG, Chung Y, Färe R (1998) Profit, directional distance functions, and Nerlovian efficiency. J Optim Theory Appl 98(2):351–364
Charnes A, Cooper WW, Golany B, Seiford L, Stutz J (1985) Foundations of data envelopment analysis for Pareto–Koopmans efficient empirical production functions. J Econ 30:91–107
Cherchye L, Van Puyenbroeck T (2001) A comment on multi-stage DEA methodology. Oper Res Lett 28:93–98
Cooper WW, Park KS, Pastor JT (1999) RAM: a range adjusted measure of inefficiency for use with additive models, and relations to others models and measures in DEA. J Prod Anal 11:5–42
Färe R, Lovell CAK (1978) Measuring the technical efficiency of production. J Econ Theory 19:150–162
Färe R, Primont D (1995) Multi-output production and duality: theory and applications. Kluwer Academic, Boston
Färe R, Grosskopf S, Lovell CAK (1985) The measurement of efficiency of production. Kluwer Nijhof Publishing, Boston
Färe R, Grosskopf S, Whittaker G (2007) Network DEA. In: Zhu J, Cook WD (eds) Modeling data irregularities and structural complexities in data envelopment analysis, chapter 12. Springer, Berlin
Frei FX, Harker PT (1999) Projections onto efficient frontiers: theoretical and computational extensions to DEA. J Prod Anal 11:275–300
Fukuyama H, Maeda Y, Sekitani K, Shi J (2014a) Input-output substitutability and strongly monotonic p-norm least-distance DEA measures. Eur J Oper Res 237:997–1007
Fukuyama H, Masaki H, Sekitani K, Shi J (2014b) Distance optimization approach to ratio-form efficiency measures in data envelopment analysis. J Prod Anal 42:175–186
Fukuyama H, Hougaard JL, Sekitani K, Shi J (2016) Efficiency measurement with a nonconvex free disposal hull technology. J Oper Res Soc 67(1):9–19
Gonzalez E, Alvarez A (2001) From efficiency measurement to efficiency improvement: the choice of a relevant benchmark. Eur J Oper Res 133:512–520
Jahanshahloo GR, Lotfi FH, Zohrehbandian M (2005) Finding the piecewise linear frontier production function in data envelopment analysis. Appl Math Comput 163:483–488
Jahanshahloo GR, Lotfi FH, Rezai HZ, Balf FR (2007) Finding strong defining hyperplanes of production possibility set. Eur J Oper Res 177:42–54
Jahanshahloo GR, Mehdiloozad M, Roshdi I (2013) Directional closest-target based measures of efficiency: Hölder norms approach. Int J Ind Math 5(1):31–39
Koopmans TC (1951) Analysis of production as an efficient combination of activities. In: Koopmans TC (ed) Activity analysis of production and allocation. Wiley, New York
Kuosmanen T, Kortelainen M, Sipiläinen T, Cherchye L (2010) Firm and industry level profit efficiency analysis using absolute and uniform shadow prices. Eur J Oper Res 202:584–594
Lozano S, Villa G (2005) Determining a sequence of targets in DEA. J Oper Res Soc 56:1439–1447
Luenberger DG (1992) New optimality principles for economic efficiency and equilibrium. J Optim Theory Appl 75(2):221–264
MAGRAMA (2015) Estadisticas. Producciones Agricolas. Ministerio de Agricultura, Alimentacion y Medio Ambiente. http://www.magrama.gob.es/es/agricultura/estadisticas/. Accessed 28 Dec 2015 (in Spanish)
Mangasarian OL (1999) Arbitrary-norm separating plane. Oper Res Lett 24:15–23
Nerlove M (1965) Estimation and identification of cobb-douglas production functions. Rand Mc Nally Company, Chicago
Olesen O, Petersen NC (1996) Indicators of ill-conditioned data sets and model misspecification in data envelopment analysis: an extended facet approach. Manag Sci 42:205–219
Olesen O, Petersen NC (2003) Identification and use of efficient faces and facets in DEA. J Prod Anal 20:323–360
Pastor JT, Aparicio J (2010) The relevance of DEA benchmarking information and the least-distance measure: comment. Math Comput Model 52:397–399
Pastor JT, Ruiz JL, Sirvent I (1999) An enhanced DEA Russell graph efficiency measure. Eur J Oper Res 115:596–607
Portela MCAS, Castro P, Thanassoulis E (2003) Finding closest targets in non-oriented DEA models: the case of convex and non-convex technologies. J Prod Anal 19:251–269
Russell RR (1985) Measures of technical efficiency. J Econ Theory 35:109–126
Russell RR (1988) On the axiomatic approach to the measurement of technical efficiency. In: Eichhorn W (ed) Measurement in economics: theory and application of economic indices. Physica-Verlag, Heidelberg
Sahoo BK, Mehdiloozad M, Tone K (2014) Cost, revenue and profit efficiency measurement in DEA: a directional distance function approach. Eur J Oper Res 237:921–931
Tone K (2001) A slacks-based measure of efficiency in data envelopment analysis. Eur J Oper Res 130:498–509
Acknowledgements
We thank two anonymous referees for providing constructive comments and help. Additionally, the authors would like to express their gratitude to the Spanish Ministry for Economy and Competitiveness for supporting this research under grant MTM2013-43903-P.
Author information
Authors and Affiliations
Corresponding author
Appendix
Appendix
Proof of Proposition 2
Let \(\left( {\varvec{c},\varvec{r}} \right) \in R_{ + + }^{m + s}\). Then, \(\left( {\varvec{c^{\prime}},\varvec{r^{\prime}}} \right) = \frac{{\left( {\varvec{c},\varvec{r}} \right)}}{{\left\| {\left( {\varvec{c},\varvec{r}} \right)} \right\|_{q} }} \in R_{ + + }^{m + s}\) and satisfies \(\left\| {\frac{{\left( {\varvec{c},\varvec{r}} \right)}}{{\left\| {\left( {\varvec{c},\varvec{r}} \right)} \right\|_{q} }}} \right\|_{q} = 1\). In this way, \(\left( {\varvec{c^{\prime}},\varvec{r^{\prime}}} \right)\) is a feasible solution of the program that appears in Proposition 1. Therefore, \(\varPi \left( {\varvec{c^{\prime}},\varvec{r^{\prime}}} \right) - \left( {\sum\nolimits_{k = 1}^{s} {r^{\prime}_{k} y_{k0} } - \sum\nolimits_{i = 1}^{m} {c^{\prime}_{i} x_{i0} } } \right) \ge D_{{\partial^{w} \left( T \right)}}^{p} \left( {\varvec{x}_{0} ,\varvec{y}_{0} } \right)\). Finally, we have that \(\frac{{\varPi \left( {\varvec{c},\varvec{r}} \right) - \left( {\sum\nolimits_{k = 1}^{s} {r_{k} y_{k0} } - \sum\nolimits_{i = 1}^{m} {c_{i} x_{i0} } } \right)}}{{\left\| {\left( {\varvec{c},\varvec{r}} \right)} \right\|_{q} }} \ge D_{{\partial^{w} \left( T \right)}}^{p} \left( {\varvec{x}_{0} ,\varvec{y}_{0} } \right)\) since the profit function is homogeneous of degree +1 in prices (see Färe and Primont 1995). □
Proof of Proposition 3
T in (1) can be rewritten as \(\left\{ {\left( {\varvec{x},\varvec{y}} \right) \in R_{ + }^{m + s} :\sum\nolimits_{k = 1}^{s} {a_{k}^{f} y_{k} } - \sum\nolimits_{i = 1}^{m} {b_{i}^{f} x_{i} } \le \varPi \left( {\varvec{b}^{f} ,\varvec{a}^{f} } \right),f = 1, \ldots ,F} \right\}\), where \(\left( {\varvec{b}^{f} ,\varvec{a}^{f} } \right) \in R_{ + }^{m + s}\) for all \(f = 1, \ldots ,F\) since T is a polyhedral set (Proposition 1 in Briec and Leleu 2003). Trivially, we see that if \(\left( {\varvec{b}^{f} ,\varvec{a}^{f} } \right) = \left( {{\mathbf{0}}_{m} ,{\mathbf{0}}_{s} } \right)\) for some \(f = 1, \ldots ,F\), where \({\mathbf{0}}_{g} = \left( {0, \ldots ,0} \right)\), then \(\varPi \left( {\varvec{b}^{f} ,\varvec{a}^{f} } \right) = 0\) and the corresponding constraint is redundant and can be deleted. Now, by Lemma 4.1 in Briec (1997), \(WD_{{\partial^{w} \left( T \right)}}^{p} \left( {\varvec{x}_{0} ,\varvec{y}_{0} } \right) = \mathop {\hbox{min} }\nolimits_{f = 1, \ldots ,F} \left\{ {\mathop {\inf }\nolimits_{{\varvec{u},\varvec{v}}} \left\{ {\left\| {\left( {\varvec{x}_{0} ,\varvec{y}_{0} } \right) - \left( {\varvec{u},\varvec{v}} \right)} \right\|_{p}^{\alpha } :\left( {\varvec{u},\varvec{v}} \right) \in H_{f} } \right\}} \right\},\) where \(\varvec{\alpha}= \left( {\tfrac{1}{{x_{10} }}, \ldots ,\tfrac{1}{{x_{m0} }},\tfrac{1}{{y_{10} }}, \ldots ,\tfrac{1}{{y_{s0} }}} \right)\) and \(H_{f} = \left\{ {\left( {\varvec{x},\varvec{y}} \right) \in R_{{}}^{m + s} :\sum\nolimits_{k = 1}^{s} {a_{k}^{f} y_{k} } - \sum\nolimits_{i = 1}^{m} {b_{i}^{f} x_{i} } = \varPi \left( {\varvec{b}^{f} ,\varvec{a}^{f} } \right)} \right\}\), \(f = 1, \ldots ,F\). On the other hand, \(\mathop {\inf }\nolimits_{{\varvec{u},\varvec{v}}} \left\{ {\left\| {\left( {\varvec{x}_{0} ,\varvec{y}_{0} } \right) - \left( {\varvec{u},\varvec{v}} \right)} \right\|_{p}^{\alpha } :\left( {\varvec{u},\varvec{v}} \right) \in H_{f} } \right\} = \mathop {\inf }\nolimits_{{\tilde{\varvec{u}},\tilde{\varvec{v}}}} \left\{ {\left\| {\left( {{\mathbf{1}}_{m} ,{\mathbf{1}}_{s} } \right) - \left( {\tilde{\varvec{u}},\tilde{\varvec{v}}} \right)} \right\|_{p}^{{}} :\left( {\tilde{\varvec{u}},\tilde{\varvec{v}}} \right) \in \tilde{H}_{f} } \right\}\), where \({\mathbf{1}}_{g} = \left( {1, \ldots ,1} \right)\) and \(\tilde{H}_{f} = \left\{ {\left( {\varvec{x},\varvec{y}} \right) \in R_{{}}^{m + s} :\sum\nolimits_{k = 1}^{s} {\left( {a_{k}^{f} y_{k0} } \right)y_{k} } - \sum\nolimits_{i = 1}^{m} {\left( {b_{i}^{f} x_{i0} } \right)x_{i} } = \varPi \left( {\varvec{b}^{f} ,\varvec{a}^{f} } \right)} \right\}\), thanks to (8) and the change of variables \(\tilde{u}_{i} = {{u_{i} } \mathord{\left/ {\vphantom {{u_{i} } {x_{i0} }}} \right. \kern-0pt} {x_{i0} }},\;i = 1, \ldots ,m\), and \(\tilde{v}_{k} = {{v_{k} } \mathord{\left/ {\vphantom {{v_{k} } {y_{k0} }}} \right. \kern-0pt} {y_{k0} }},\;k = 1, \ldots ,s\). Now, applying the Ascoli’s formula, we have that \(\mathop {\inf }\nolimits_{{\tilde{\varvec{u}},\tilde{\varvec{v}}}} \left\{ {\left\| {\left( {{\mathbf{1}}_{m} ,{\mathbf{1}}_{s} } \right) - \left( {\tilde{\varvec{u}},\tilde{\varvec{v}}} \right)} \right\|_{p}^{{}} :\left( {\tilde{\varvec{u}},\tilde{\varvec{v}}} \right) \in \tilde{H}_{f} } \right\} = \frac{{\varPi \left( {\varvec{b}^{f} ,\varvec{a}^{f} } \right) - \left( {\sum\nolimits_{k = 1}^{s} {a_{k}^{f} y_{k0} } - \sum\nolimits_{i = 1}^{m} {b_{i}^{f} x_{i0} } } \right)}}{{\left\| {\left( {b_{1} x_{10} , \ldots ,b_{m} x_{m0} ,a_{1} y_{10} , \ldots ,a_{s} y_{s0} } \right)} \right\|_{q} }}\). In this way, we have that \(WD_{{\partial^{w} \left( T \right)}}^{p} \left( {\varvec{x}_{0} ,\varvec{y}_{0} } \right) = \mathop {\hbox{min} }\nolimits_{f = 1, \ldots ,F} \left\{ {\frac{{\varPi \left( {\varvec{b}^{f} ,\varvec{a}^{f} } \right) - \left( {\sum\nolimits_{k = 1}^{s} {a_{k}^{f} y_{k0} } - \sum\nolimits_{i = 1}^{m} {b_{i}^{f} x_{i0} } } \right)}}{{\left\| {\left( {b_{1} x_{10} , \ldots ,b_{m} x_{m0} ,a_{1} y_{10} , \ldots ,a_{s} y_{s0} } \right)} \right\|_{q} }}} \right\}\). Finally, let us consider \(\left( {\varvec{c},\varvec{r}} \right) \in R_{ + + }^{m + s}\). By the definition of the profit function, \(T = \left\{ {\left( {\varvec{x},\varvec{y}} \right) \in R_{ + }^{m + s} :\sum\nolimits_{k = 1}^{s} {a_{k}^{f} y_{k} } - \sum\nolimits_{i = 1}^{m} {b_{i}^{f} x_{i} } \le \varPi \left( {\varvec{b}^{f} ,\varvec{a}^{f} } \right),f = 1, \ldots ,F,\sum\nolimits_{k = 1}^{s} {r_{k} y_{k} } - \sum\nolimits_{i = 1}^{m} {c_{i} x_{i} } \le \varPi \left( {\varvec{c},\varvec{r}} \right)} \right\}.\) In this way, by the same reasoning than above, \(WD_{{\partial^{w} \left( T \right)}}^{p} \left( {\varvec{x}_{0} ,\varvec{y}_{0} } \right) = \hbox{min} \left\{ {\mathop {\hbox{min} }\nolimits_{f = 1, \ldots ,F} \left\{ {\frac{{\varPi \left( {\varvec{b}^{f} ,\varvec{a}^{f} } \right) - \left( {\sum\nolimits_{k = 1}^{s} {a_{k}^{f} y_{k0} } - \sum\nolimits_{i = 1}^{m} {b_{i}^{f} x_{i0} } } \right)}}{{\left\| {\left( {b_{1} x_{10} , \ldots ,b_{m} x_{m0} ,a_{1} y_{10} , \ldots ,a_{s} y_{s0} } \right)} \right\|_{q} }}} \right\},\frac{{\varPi \left( {\varvec{c},\varvec{r}} \right) - \left( {\sum\nolimits_{k = 1}^{s} {r_{k} y_{k0} } - \sum\nolimits_{i = 1}^{m} {c_{i} x_{i0} } } \right)}}{{\left\| {\left( {c_{1} x_{10} , \ldots ,c_{m} x_{m0} ,r_{1} y_{10} , \ldots ,r_{s} y_{s0} } \right)} \right\|_{q} }}} \right\}\). Finally, \(\frac{{\varPi \left( {\varvec{c},\varvec{r}} \right) - \left( {\sum\nolimits_{k = 1}^{s} {r_{k} y_{k0} } - \sum\nolimits_{i = 1}^{m} {c_{i} x_{i0} } } \right)}}{{\left\| {\left( {c_{1} x_{10} , \ldots ,c_{m} x_{m0} ,r_{1} y_{10} , \ldots ,r_{s} y_{s0} } \right)} \right\|_{q} }} \ge WD_{{\partial^{w} \left( T \right)}}^{p} \left( {\varvec{x}_{0} ,\varvec{y}_{0} } \right)\). □
Proof of Proposition 4
(1) It is evident by the definition of \(PI_{p} \left( {\varvec{x}_{0} ,\varvec{y}_{0} ,\varvec{c},\varvec{r},T} \right)\). (2) If \(PI_{p} \left( {\varvec{x}_{0} ,\varvec{y}_{0} ,\varvec{c},\varvec{r},T} \right) = 0\), by (12), \(y_{k}^{M*} - y_{k0} = 0\) for all \(k = 1, \ldots ,s\) and \(x_{i0} - x_{i}^{M*} = 0\) for all \(i = 1, \ldots ,m\). Hence, \(\left( {\varvec{x}_{0} ,\varvec{y}_{0} } \right) = \left( {\varvec{x}^{M*} ,\varvec{y}^{M*} } \right)\) and, consequently, \(\left( {\varvec{x}_{0} ,\varvec{y}_{0} } \right) = \arg \hbox{max} \left\{ {\sum\nolimits_{k = 1}^{s} {r_{k} y_{k} } - \sum\nolimits_{i = 1}^{m} {c_{i} x_{i} } :\left( {\varvec{x},\varvec{y}} \right) \in T} \right\}\). On the other hand, if \(\left( {\varvec{x}_{0} ,\varvec{y}_{0} } \right) = \arg \hbox{max} \left\{ {\sum\nolimits_{k = 1}^{s} {r_{k} y_{k} } - \sum\nolimits_{i = 1}^{m} {c_{i} x_{i} } :\left( {\varvec{x},\varvec{y}} \right) \in T} \right\}\), then, under our assumptions, \(\left( {\varvec{x}_{0} ,\varvec{y}_{0} } \right) = \left( {\varvec{x}^{M*} ,\varvec{y}^{M*} } \right)\) and, consequently, \(PI_{p} \left( {\varvec{x}_{0} ,\varvec{y}_{0} ,\varvec{c},\varvec{r},T} \right) = 0\) by (12). (3) It is evident by the definition of \(PI_{p} \left( {\varvec{x}_{0} ,\varvec{y}_{0} ,\varvec{c},\varvec{r},T} \right)\) since the sign of the profit function does not affect directly to the value of \(PI_{p} \left( {\varvec{x}_{0} ,\varvec{y}_{0} ,\varvec{c},\varvec{r},T} \right)\). (iv) \(PI_{p} \left( {\varvec{x}_{0} ,\varvec{y}_{0} ,\delta \varvec{c},\delta \varvec{r},T} \right) = \frac{{\left( {\sum\nolimits_{k = 1}^{s} {\delta r_{k} \left| {y_{k}^{M*} - y_{k0} } \right|^{p} } + \sum\nolimits_{i = 1}^{m} {\delta c_{i} \left| {x_{i0} - x_{i}^{M*} } \right|^{p} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-0pt} p}}} }}{{\left\| {\left( {\delta c_{1} x_{10} , \ldots ,\delta c_{m} x_{m0} ,\delta r_{1} y_{10} , \ldots ,\delta r_{s} y_{s0} } \right)} \right\|_{q} }} = PI_{p} \left( {\varvec{x}_{0} ,\varvec{y}_{0} ,\varvec{c},\varvec{r},T} \right)\) for all \(\delta > 0\) by (4). (v) Let us assume that each input \(i\), \(i = 1, \ldots ,m\), is transformed as follows \(x_{i} \to \delta_{i} x_{i}\) with \(\delta_{i} > 0\) and each output \(k\), \(k = 1, \ldots ,s\), is transformed as follows \(y_{k} \to \mu_{k} y_{k}\) with \(\mu_{k} > 0\). In this way, the original technology is transformed and denoted as \(\left( {\delta ,\mu } \right)T\). This data transformation affects also to the market prices in the following way: \(\left( {\varvec{c},\varvec{r}} \right) \to \left( {\frac{\varvec{c}}{\delta },\frac{\varvec{r}}{\mu }} \right) = \left( {\frac{{c_{1} }}{{\delta_{1} }}, \ldots ,\frac{{c_{m} }}{{\delta_{m} }},\frac{{r_{1} }}{{\mu_{1} }}, \ldots ,\frac{{r_{s} }}{{\mu_{s} }}} \right)\). Then, by (1) and the definition of the profit function, \(\left( {\varvec{x}^{M*} ,\varvec{y}^{M*} } \right) \to \left( {\delta_{1} x_{1}^{M*} , \ldots ,\delta_{m} x_{m}^{M*} ,\mu_{1} y_{1}^{M*} , \ldots ,\mu_{s} y_{s}^{M*} } \right)\). Also, \(\left( {\varvec{x}_{0} ,\varvec{y}_{0} } \right) \to \left( {\delta \varvec{x}_{0} ,\mu \varvec{y}_{0} } \right) = \left( {\delta_{1} x_{10}^{{}} , \ldots ,\delta_{m} x_{m0}^{{}} ,\mu_{1} y_{10}^{{}} , \ldots ,\mu_{s} y_{s0}^{{}} } \right)\). Then, \(PI_{p} \left( {\delta \varvec{x}_{0} ,\delta \varvec{y}_{0} ,\frac{\varvec{c}}{\delta },\frac{\varvec{r}}{\delta },T} \right) = \frac{{\left( {\sum\nolimits_{k = 1}^{s} {\left| {\frac{{r_{k} }}{{\mu_{k} }}\left( {\mu_{k} y_{k}^{M*} - \mu_{k} y_{k0} } \right)} \right|^{p} } + \sum\nolimits_{i = 1}^{m} {\left| {\frac{{c_{i} }}{{\delta_{i} }}\left( {\delta_{i} x_{i0} - \delta_{i} x_{i}^{M*} } \right)} \right|^{p} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-0pt} p}}} }}{{\left\| {\left( {\frac{{c_{1} }}{{\delta_{1} }}\delta_{1} x_{10} , \ldots ,\frac{{c_{m} }}{{\delta_{m} }}\delta_{m} x_{m0} ,\frac{{r_{1} }}{{\mu_{1} }}\mu_{1} y_{10} , \ldots ,\frac{{r_{s} }}{{\mu_{s} }}\mu_{s} y_{s0} } \right)} \right\|_{q} }} = PI_{p} \left( {\varvec{x}_{0} ,\varvec{y}_{0} ,\varvec{c},\varvec{r},T} \right)\). □
Proof of Proposition 5
From \(p = 1\) and \(\left( {\varvec{x}^{M*} , - \varvec{y}^{M*} } \right) \le \left( {\varvec{x}_{0} , - \varvec{y}_{0} } \right)\), we may rewritten \(PI_{p} \left( {\varvec{x}_{0} ,\varvec{y}_{0} ,\varvec{c},\varvec{r},T} \right)\) as \(\frac{{\left( {\sum\nolimits_{k = 1}^{s} {r_{k} y_{k}^{M*} } - \sum\nolimits_{i = 1}^{m} {c_{i} x_{i}^{M*} } } \right) - \left( {\sum\nolimits_{k = 1}^{s} {r_{k} y_{k0}^{{}} } - \sum\nolimits_{i = 1}^{m} {c_{i} x_{i0}^{{}} } } \right)}}{{\left\| {\left( {c_{1} x_{10} , \ldots ,c_{m} x_{m0} ,r_{1} y_{10} , \ldots ,r_{s} y_{s0} } \right)} \right\|_{\infty } }}\). Finally, this last expression is equivalent to \(\frac{{\varPi \left( {\varvec{c},\varvec{r}} \right) - \left( {\sum\nolimits_{k = 1}^{s} {r_{k} y_{k0} } - \sum\nolimits_{i = 1}^{m} {c_{i} x_{i0} } } \right)}}{{\left\| {\left( {c_{1} x_{10} , \ldots ,c_{m} x_{m0} ,r_{1} y_{10} , \ldots ,r_{s} y_{s0} } \right)} \right\|_{\infty } }}\) since \(\sum\nolimits_{k = 1}^{s} {r_{k} y_{k}^{M*} } - \sum\nolimits_{i = 1}^{m} {c_{i} x_{i}^{M*} } = \varPi \left( {\varvec{c},\varvec{r}} \right)\). □
Proof of Proposition 6
(1) Trivial by the definition of (16). (2) It is evident from the fact that we are calculating a mathematical distance from \(\left( {\varvec{x}_{0} ,\varvec{y}_{0} } \right)\) to the set \(\partial^{s} \left( T \right)\). (3) Let us assume that each input \(i\), \(i = 1, \ldots ,m\), is transformed as follows \(x_{i} \to \delta_{i} x_{i}\) with \(\delta_{i} > 0\) and each output \(k\), \(k = 1, \ldots ,s\), is transformed as follows \(y_{k} \to \mu_{k} y_{k}\) with \(\mu_{k} > 0\). In this way, the original technology is transformed and denoted as \(\left( {\delta ,\mu } \right)T\). It is not difficult to prove that \(\left( {\varvec{x},\varvec{y}} \right) \in \partial^{s} \left( T \right)\) if and only if \(\left( {\delta \varvec{x},\mu \varvec{y}} \right) \in \partial^{s} \left( {\left( {\delta ,\mu } \right)T} \right)\). This data transformation affects also to the market prices in the following way: \(\left( {\varvec{c},\varvec{r}} \right) \to \left( {\frac{\varvec{c}}{\delta },\frac{\varvec{r}}{\mu }} \right) = \left( {\frac{{c_{1} }}{{\delta_{1} }}, \ldots ,\frac{{c_{m} }}{{\delta_{m} }},\frac{{r_{1} }}{{\mu_{1} }}, \ldots ,\frac{{r_{s} }}{{\mu_{s} }}} \right)\). Then, by the definition of (16), \(WD_{{\partial^{s} \left( {\left( {\delta ,\mu } \right)T} \right)}}^{p} \left( {\delta \varvec{x}_{0} ,\mu \varvec{y}_{0} ;\left( {\delta ,\mu } \right)\varvec{\alpha}_{0} } \right) = WD_{{\partial^{S} \left( T \right)}}^{p} \left( {\varvec{x}_{0} ,\varvec{y}_{0} ;\varvec{\alpha}_{0} } \right)\), where \(\left( {\delta ,\mu } \right)\varvec{\alpha}_{0} = \frac{{\left( {\frac{\varvec{c}}{\delta },\frac{\varvec{r}}{\mu }} \right)}}{{\left\| {\left( {\frac{{c_{1} }}{{\delta_{i} }}\delta_{i} x_{10} , \ldots ,\frac{{c_{m} }}{{\delta_{m} }}\delta_{m} x_{m0} ,\frac{{r_{1} }}{{\mu_{1} }}\mu_{1} y_{10} , \ldots ,\frac{{r_{s} }}{{\mu_{s} }}\mu_{s} y_{s0} } \right)} \right\|_{q} }}\). □
Proof of Proposition 7
Given \(\left( {\varvec{c},\varvec{r}} \right) \in R_{ + + }^{m + s}\), \(\left( {\varvec{x}^{M*} ,\varvec{y}^{M*} } \right) \in \partial^{s} \left( T \right)\), which implies that \(\left( {\varvec{x}^{M*} ,\varvec{y}^{M*} } \right)\) is a feasible solution of model (16) and, therefore, \(PI_{p} \left( {\varvec{x}_{0} ,\varvec{y}_{0} ,\varvec{c},\varvec{r},T} \right) \ge WD_{{\partial^{S} \left( T \right)}}^{p} \left( {\varvec{x}_{0} ,\varvec{y}_{0} ;\varvec{\alpha}_{0} } \right)\) by (12). □
Rights and permissions
About this article
Cite this article
Aparicio, J., Pastor, J.T., Sainz-Pardo, J.L. et al. Estimating and decomposing overall inefficiency by determining the least distance to the strongly efficient frontier in data envelopment analysis. Oper Res Int J 20, 747–770 (2020). https://doi.org/10.1007/s12351-017-0339-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12351-017-0339-0