Skip to main content
Log in

Equilibrium joining strategies in the Mn/G/1 queue with server breakdowns and repairs

  • Original Paper
  • Published:
Operational Research Aims and scope Submit manuscript

Abstract

This paper considers an almost observable unreliable \(M_{n}{/}G{/}1\) queueing system in which the arriving customers can observe the queue length upon their arrivals but not the state of the server. The arrival rates are state-dependent and the server is subject to breakdowns when it works. The lifetime of the server and the repair time are independent, and they follow two different general distributions. To obtain the steady-state queue length distribution, we present an auxiliary system called modified \(M_{n}{/}G{/}1\) queueing system. Comparing the unreliable system with the modified system, we derive the steady-state queue length distributions at the arrival instant of a tagged customer. Moreover, we study customers’ equilibrium joining strategies based on a nonlinear waiting cost function. These results provide managerial insights into strategic behaviors of customers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anthony C (2000) Individual equilibrium dynamic routing in a multiple server retrial queue. Probab Eng Inf Sci 14:9–26

    Google Scholar 

  • Atencia I (2015) A discrete-time queueing system with server breakdowns and changes in the repair times. Ann Oper Res 235:37–49

    Google Scholar 

  • Atencia I, Moreno P (2006) A discrete-time Geo/G/1 retrial queue with server breakdowns. Asia Pac J Oper Res 23:247–271

    Google Scholar 

  • Atencia I, Bouza G, Moreno P (2008) An \(M^{[X]}/G/1\) retrial queue with server breakdowns and constant rate of repeated attempts. Ann Oper Res 157:225–243

    Google Scholar 

  • Avi-Itzhak B, Naor P (1962) Some queueing problems with the service station subject to breakdown. Oper Res 10:303–320

    Google Scholar 

  • Boudali O, Economou A (2012) Optimal and equilibrium balking strategies in the single server Markovian queue with catastrophes. Eur J Oper Res 218:708–715

    Google Scholar 

  • Burnetas A, Economou A (2007) Equilibrium customer strategies in a single server Markovian queue with setup times. Queueing Syst 56:213–228

    Google Scholar 

  • Choudhury G, Tadj L (2009) An \(M{/}G{/}1\) queue with two phases of service subject to the server breakdown and delayed repair. Appl Math Model 33:2699–2709

    Google Scholar 

  • Cui S, Su X, Veeraraghavan SK (2014) A model of rational retrials in queues. Working paper

  • Economou A, Kanta S (2008) Equilibrium balking strategies in the observable single server queue with breakdowns and repairs. Oper Res Lett 36:696–699

    Google Scholar 

  • Economou A, Kanta S (2011) Equilibrium customer strategies and social-profit maximization in the single-server constant retrial queue. Nav Res Log 58:107–122

    Google Scholar 

  • Economou A, Manou A (2015) A probability approach for the analysis of the \(M_n/G/1\) queue. Ann Oper Res. https://doi.org/10.1007/s10479-015-1943-0

    Article  Google Scholar 

  • Elcan A (1994) Optimal customer return rate for an \(M/M/1\) queueing system with retrials. Probab Eng Inf Sci 8:521–539

    Google Scholar 

  • Feller W (1971) An introduction to probability theory and its applications, vol II, 3rd edn. Wiley, New York

    Google Scholar 

  • Gibbons R (1992) A primer in game theory. Harvester Wheatsheaf, Birmingham

    Google Scholar 

  • Gray WJ, Wang P, Scott M (2000) A vacation queueing model with service breakdowns. Appl Math Model 24:391–400

    Google Scholar 

  • Guo P, Hassin R (2011) Strategic behavior and social optimization in Markovian vacation queues. Oper Res 59:986–997

    Google Scholar 

  • Guo P, Zipkin P (2007) Analysis and comparision of queues with different levels of delay information. Manag Sci 53:962–970

    Google Scholar 

  • Hassin R, Haviv M (2002) Nash equilibrium and subgame perfection in observable queues. Ann Oper Res 113:15–26

    Google Scholar 

  • Hassin R, Haviv M (2003) To queue or not to queue. Springer, Berlin

    Google Scholar 

  • Jain M, Jain A (2010) Working vacations queueing model with multiple types of server breakdowns. Appl Math Model 34:1–13

    Google Scholar 

  • Jayaraman D, Nadarajan R, Sitrarasu MR (1994) A general bulk service queue with arrival rate dependent on server breakdowns. Appl Math Model 18:156–160

    Google Scholar 

  • Ke JC (2006) On \(M{/}G{/}1\) system under NT policies with breakdowns, startup and closedown. Appl Math Model 30:49–66

    Google Scholar 

  • Ke JC (2007) Batch arrival queues under vacation policies with server breakdowns and startup/closedown times. Appl Math Model 31:1282–1292

    Google Scholar 

  • Kerner Y (2008) The conditional distribution of the residual service time in the \(M_n/G/1\) queue. Stoch Mod 24:364–375

    Google Scholar 

  • Kerner Y (2011) Equilibrium joining probabilities for an \(M{/}G{/}1\) queue. Games Econ Behav 71:521–526

    Google Scholar 

  • Kim BK, Lee DH (2014) The \(M{/}G{/}1\) queue with disasters and working breakdowns. Appl Math Model 38:1788–1798

    Google Scholar 

  • Krishnamoorthy A, Pramod PK, Chakravarthy SR (2014) Queues with interruptions: a survey. TOP 22:290–320

    Google Scholar 

  • Kulkarni VG (1983) A game theoretic model for two types of customers competing for service. Oper Res Lett 2:119–122

    Google Scholar 

  • Kulkarni VG, Choi BD (1990) Retrial queues with server subject to breakdowns and repairs. Queueing Syst 7:191–208

    Google Scholar 

  • Lee DH, Yang Ws, Park HM (2011) \(Geo/G/1\) queues with disasters and general repair times. Appl Math Model 35:1561–1570

    Google Scholar 

  • Li Q, Ying Y, Zhao YQ (2006) A \(BMAP/G/1\) retrial queue with a server subject to breakdowns and repairs. Ann Oper Res 141:233–270

    Google Scholar 

  • Lin CH, Ke JC (2011) On the discrete-time system with server breakdowns: computational algorithm and optimization algorithm. Appl Math Comput 218:3624–3634

    Google Scholar 

  • Maister DH (1985) The psychology of waiting lines. In: Czepiel JA, Soloman M, Surprenant CS (eds) The service encounter. Lexington Books, Lexington

    Google Scholar 

  • Mitrany JL, Avi-Itzhak B (1968) A many server queue with server interruptions. Oper Res 16:628–638

    Google Scholar 

  • Naor P (1969) The regulation of queue size by levying tolls. Econometrica 37:15–24

    Google Scholar 

  • Sabri-Laghaie K, Mansouri M, Motaghedi-Larijani A, Jalali-Naini G (2012) Combining a maintenance center \(M/M/c/m\) queue into the economic production quantity model with stochastic machine breakdowns and repair. Comput Ind Eng 63:864–874

    Google Scholar 

  • Thiruvenydan K (1963) Queueing with breakdown. Oper Res 11:62–71

    Google Scholar 

  • Vinck B, Bruneela H (2006) System delay versus system content for discrete-time queueing systems subject to server interruptions. Eur J Oper Res 175(1):362–375

    Google Scholar 

  • Wang J, Zhang P (2009) A single-server discrete-time retrial G-queue with server breakdowns and repairs. Acta Math Appl Sin E 25:675–684

    Google Scholar 

  • Wang J, Zhang F (2011) Equilibrium analysis of the observable queues with balking and delayed repairs. Appl Math Comput 218:2716–2729

    Google Scholar 

  • Wang J, Zhang F (2013) Strategic joining in \(M/M/1\) retrial queues. Eur J Oper Res 230:76–87

    Google Scholar 

  • Wang J, Cao J, Li Q (2001) Reliability analysis of the retrial queue with server breakdowns and repairs. Queueing Syst 38:363–380

    Google Scholar 

  • Wang KH, Chan MC, Ke JC (2007a) Maximum entropy analysis of the \(M^{[x]}/M/1\) queueing system with multiple vacations and server breakdowns. Comput Ind Eng 52:192–202

    Google Scholar 

  • Wang KH, Wang TY, Pearn WL (2007b) Optimal control of the \(N\) policy \(M{/}G{/}1\) queueing system with server breakdowns and general startup times. Appl Math Model 31:2199–2212

    Google Scholar 

  • White H, Christie L (1958) Queuing with preemptive priorities or with breakdown. Oper Res 6:79–95

    Google Scholar 

  • Zhang F, Wang J, Liu B (2012) On the optimal and equilibrium retrial rates in an unreliable retrial queue with vacations. J Ind Manag Optim 8:861–875

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinting Wang.

Additional information

Supported by the National Natural Science Foundation of China (71571014 and 71390334).

Appendix

Appendix

Proof of Lemma 3.1

By the definition of distribution function, we have

$$ \begin{aligned} \hat{B}(x)&\;=\Pr (\hat{X_{i}} \le x)=Pr(\bar{X_{i}} \le x)=\Pr (X_{i}+\sum _{j=1}^{N(X_{i})}Y_{ij} \le x) \\&\;=\int _{0}^{x}\Pr (\sum _{j=1}^{N(t)}Y_{ij} \le x-t)dB(t)= \int _{0}^{x} \left[ \int _{0}^{\infty }\Pr (\sum _{j=1}^{z}Y_{ij} \le x-t)d_z\Psi _t(z) \right] dB(t), \end{aligned}$$

where \(\Psi _t(z)=Pr(N(t)\le z)=\sum _{i=0}^{z}P_{t}(i)\). Since \(Y_{ij}\sim G(x),i,j \in Z^{+}\), in virtue of the convolution formula, we get

$$ \hat{B}(x)=\int _{0}^{x} \left[ \int _{0}^{\infty }\tilde{G}^{(z)}(x-t)d_z\Psi _t(z) \right] dB(t). $$
(7.1)

This completes the proof. \(\square \)

Proof of Lemma 3.2

(1) The mean service time in modified \(M_n{/}G{/}1\) system can be computed by

$$ \begin{aligned} E(\hat{X_{i}})&\;= E(\bar{X_{i}})=E(X_{i}+\sum _{j=1}^{N(X_{i})}Y_{ij}) =\beta _{1}+E[E(\sum _{j=1}^{N(X_{i})}Y_{ij}|N(X_{i}))] \nonumber \\&\;=\beta _{1}+\sum _{k=1}^{\infty }E\left[ \sum _{j=1}^{k}Y_{ij}|N(X_{i})=k\right] \Pr (N(X_{i})=k). \end{aligned}$$
(7.2)

The number of breakdowns \(N(X_{i})\) is independent of \(Y_{ij}, j=1,2,\ldots , N(X_{i})\), then (7.2) can be rewritten as

$$ E(\hat{X})=\beta _{1}+\sum _{k=1}^{\infty }E\left( \sum _{j=1}^{k}Y_{ij}\right) \Pr (N(X_{i})=k). $$

Since \(Y_{ij}, j=1,2,\ldots , k\) are i.i.d random variables with the common mean value \(\gamma _{1}\), we have that

$$ E(\hat{X_{i}})=\beta _{1}+\gamma _{1}\sum _{k=1}^{\infty }k\Pr (N(X_{i})=k)=\beta _{1}+\gamma _{1}\sum _{k=1}^{\infty }k\int _{0}^{\infty }P_{x}(k)dB(x), $$

where the last equation is by the total probability formula.

(2) According to the definition of the modified system, we know that the conditional mean remaining service time at the arrival instant of a tagged customer who finds n customers in the modified system is identical to the generalized conditional mean remaining service time in the unreliable system. This completes the proof. \(\square \)

Proof of Lemma 4.3

(1) By the definition of distribution, we have

$$ \begin{aligned} \hat{B}(x)&\;=\Pr (\hat{X_{i}} \le x)=\Pr (X_{i}+\sum _{j=1}^{N(X_{i})}Y_{ij} \le x) \nonumber \\&\;= \Pr (X_{i}+\sum _{j=1}^{N(X_{i})}Y_{ij} \le x,N(X_{i})=0) + \Pr (X_{i}+\sum _{j=1}^{N({X_{i})}}Y_{ij} \le x, N(X_{i})\ne 0). \end{aligned}$$
(7.3)

Next we prove that \(\lim \limits _{\alpha \rightarrow 0}\Pr (X_{i}+\sum _{j=1}^{N({X_{i})}}Y_{ij} \le x, N(X_{i})\ne 0)=0\).

$$ \Pr (X_{i}+\sum _{j=1}^{N(X_{i})}Y_{ij} \le x, N(X_{i})\ne 0)\le \Pr ( N(X_{i})\ne 0), $$
(7.4)

and

$$ \Pr ( N(X_{i})\ne 0)=1-\Pr ( N(X_{i})=0)=1-\int _{0}^{\infty }e^{-x\alpha }dB(y). $$
(7.5)

From (7.4) and (7.5), we have

$$ \Pr (X_{i}+\sum _{j=1}^{N(X_{i})}Y_{ij} \le x, N(X_{i})\ne 0)\le 1-\int _{0}^{\infty }e^{-x\alpha }dB(y). $$

Since \(e^{-x\alpha }>0\) and \(\int _{0}^{\infty }|e^{-x\alpha }|dB(y)<\infty \), we get

$$ \lim \limits _{\alpha \rightarrow 0}\Pr (X_{i}+\sum _{j=1}^{N(X_{i})}Y_{ij} \le x, N(X_{i})\ne 0)\le 1-\int _{0}^{\infty }\lim \limits _{\alpha \rightarrow 0}e^{-x\alpha }dB(y)=0. $$

Hence \(\lim \limits _{\alpha \rightarrow 0}\Pr (X_{i}+\sum _{j=1}^{N(X_{i})}Y_{ij} \le x, N(X_{i})\ne 0)=0\). From (7.3), we immediately obtain the following equation:

$$ \lim \limits _{\alpha \rightarrow 0}\hat{B}(x)= \lim \limits _{\alpha \rightarrow 0}\Pr (X_{i}+\sum _{j=1}^{N(X_{i})}Y_{ij} \le x,N(X_{i})=0). $$
(7.6)

According to the multiplication rule of probability, we get

$$ \lim \limits _{\alpha \rightarrow 0}\hat{B}(x)= \lim \limits _{\alpha \rightarrow 0}\Pr (X_{i} \le x|N(X_{i})=0)\Pr (N(X_{i})=0). $$
(7.7)

Because \(N(X_{i})\) is independent of \(X_{i}\), and \(\Pr (N(X_{i})=0)=1-\Pr ( N(X_{i})\ne 0)=1\), then we obtain \(\lim \limits _{\alpha \rightarrow 0}\hat{B}(x)= \Pr (X_{i} \le x)=B(x)\). By the Continuity Theorem (see Feller 1971), we have

$$ \lim \limits _{\alpha \rightarrow 0}\hat{B}^{*}(s)=\lim \limits _{\alpha \rightarrow 0}\int _{0}^{\infty }e^{-sx}d\hat{B}(x)=\int _{0}^{\infty }e^{-sx}dB(x)=B^{*}(s). $$

We obtain Lemma 4.3 (1). This completes the proof. \(\square \)

(2) First we will prove that \(\lim \limits _{\theta \rightarrow \infty }\Pr (Y_{ij}\ne 0)=0\). Proof by contradiction is adopted.

Suppose that \(\lim \limits _{\theta \rightarrow \infty }\Pr (Y_{ij}\ne 0)\ne 0\), it is readily seen that \(\lim \limits _{\theta \rightarrow \infty }E(Y_{ij})>0\) since \(Y_{ij}\ge 0\) and \(\Pr (Y_{ij}\ne 0)\ne 0\). However, the repair times follow an exponential distribution with rate \(\theta \), which means \(E(Y_{ij})=\frac{1}{\theta }\), and then \(\lim \limits _{\theta \rightarrow \infty }E(Y_{ij})=0\), which conflicts with \(\lim \limits _{\theta \rightarrow \infty }E(Y_{ij})>0\). Hence the assumption that \(\lim \limits _{\theta \rightarrow \infty }\Pr (Y_{ij}\ne 0)\ne 0\) is not true, and we obtain the fact that \(\lim \limits _{\theta \rightarrow \infty }\Pr (Y_{ij}\ne 0)=0\).

According to the property of complementary events, we have \(\lim \limits _{\theta \rightarrow \infty }\Pr (Y_{ij}= 0)=1\). On the other hand,

$$ \begin{aligned} \Pr \left( \sum _{j=1}^{N(X_{i})}Y_{ij}\ne 0\right)&\;=\int _{0}^{\infty } \sum _{k=0}^{\infty } \Pr \left( \sum _{j=1}^{k}Y_{ij}\ne 0\right) \frac{(x\alpha )^{k} e^{-x\alpha }}{k!}dB(x) \nonumber \\&\;=\int _{0}^{\infty } \sum _{k=0}^{\infty } \left( 1-\Pr \left( \sum _{j=1}^{k}Y_{ij}=0\right) \right) \frac{(x\alpha )^{k} e^{-x\alpha }}{k!}dB(x). \end{aligned}$$
(7.8)

From (7.8), we have

$$ \lim \limits _{\theta \rightarrow \infty }\Pr \left( \sum _{j=1}^{N(X_{i})}Y_{ij}\ne 0\right) =\lim \limits _{\theta \rightarrow \infty }\int _{0}^{\infty } \sum _{k=0}^{\infty } \left( 1-\Pr \left( \sum _{j=1}^{k}Y_{ij}=0\right) \right) \frac{(x\alpha )^{k} e^{-x\alpha }}{k!}dB(x). $$
(7.9)

Since \(\sum _{k=0}^{\infty } \left( 1-\Pr \left( \sum _{j=1}^{k}Y_{ij}=0\right) \right) \frac{(x\alpha )^{k} e^{-x\alpha }}{k!}>0\) and

$$ \int _{0}^{\infty } \left| \sum _{k=0}^{\infty } \left( 1-\Pr \left( \sum _{j=1}^{k}Y_{ij}=0\right) \right) \frac{(x\gamma )^{k} e^{-x\alpha }}{k!}\right| dB(x)<\infty, $$

Equation (7.9) can be rewritten as

$$ \begin{aligned} \lim \limits _{\theta \rightarrow \infty }\Pr \left( \sum _{j=1}^{N(X_{i})}Y_{ij}\ne 0\right)&\;=\int _{0}^{\infty } \lim \limits _{\theta \rightarrow \infty }\sum _{k=0}^{\infty } \left( 1-\Pr \left( \sum _{j=1}^{k}Y_{ij}=0\right) \right) \frac{(x\alpha )^{k} e^{-x\alpha }}{k!}dB(x)\nonumber \\&\;=\int _{0}^{\infty } \sum _{k=0}^{\infty } \left( 1-\lim \limits _{\theta \rightarrow \infty }\Pr \left( \sum _{j=1}^{k}Y_{ij}=0\right) \right) \frac{(x\alpha )^{k} e^{-x\alpha }}{k!}dB(x). \end{aligned}$$
(7.10)

Since \(Y_{ij}\ge 0\), \(\lim \limits _{\theta \rightarrow \infty }\Pr ( \sum _{j=1}^{k}Y_{ij}=0)=\lim \limits _{\theta \rightarrow \infty }\prod _{i=0}^{k}\Pr ( Y_{ij}=0)=1\). This completes the proof. \(\square \)

(3) By the definition of distribution function, we have

$$ \lim \limits _{\theta \rightarrow \infty }\hat{B}(x)=\lim \limits _{\theta \rightarrow \infty }\Pr (\hat{X_{i}} \le x)=\lim \limits _{\theta \rightarrow \infty }\Pr \left( X_{i}+\sum _{j=1}^{N(X_{i})}Y_{ij} \le x\right), $$
(7.11)

which is identical to the following equation:

$$ \begin{aligned} \lim \limits _{\theta \rightarrow \infty }\hat{B}(x)=&\; \lim \limits _{\theta \rightarrow \infty }\Pr \left( X_{i}+\sum _{j=1}^{N(X_{i})}Y_{ij} \le x,\sum _{j=1}^{N(X_{i})}Y_{ij}=0\right) \nonumber \\&\; + \lim \limits _{\theta \rightarrow \infty }\Pr \left( X_{i}+\sum _{j=1}^{N(X_{i})}Y_{ij} \le x, \sum _{j=1}^{N(X_{i})}Y_{ij}\ne 0\right). \end{aligned}$$
(7.12)

Next we prove that \(\lim \limits _{\theta \rightarrow \infty }\Pr (X_{i}+\sum _{j=1}^{N(X_{i})}Y_{ij} \le x, \sum _{j=1}^{N(X_{i})}Y_{ij}\ne 0)=0\). Evidently,

$$ \lim \limits _{\theta \rightarrow \infty }\Pr (X_{i}+\sum _{j=1}^{N(X_{i})}Y_{ij} \le x, \sum _{j=1}^{N(X_{i})}Y_{ij}\ne 0)\le \lim \limits _{\theta \rightarrow \infty }\Pr ( \sum _{j=1}^{N(X_{i})}Y_{ij}\ne 0). $$
(7.13)

From Lemma 4.3 (2), we have

$$ \lim \limits _{\theta \rightarrow \infty }\Pr \left( X_{i}+\sum _{j=1}^{N(X_{i})}Y_{ij} \le x, \sum _{j=1}^{N(X_{i})}Y_{ij}\ne 0\right) \le 0, $$
(7.14)

which implies that \(\lim \limits _{\theta \rightarrow \infty }\Pr (X_{i}+\sum _{j=1}^{N(X_{i})}Y_{ij} \le x, \sum _{j=1}^{N(X_{i})}Y_{ij}\ne 0)=0\). Then (7.12) can be rewritten as

$$ \begin{aligned} \lim \limits _{\theta \rightarrow \infty }\hat{B}(x)&\;= \lim \limits _{\theta \rightarrow \infty }\Pr \left( X_{i}+\sum _{j=1}^{N(X_{i})}Y_{ij} \le x,\sum _{j=1}^{N(X_{i})}Y_{ij}=0\right) \nonumber \\&\;= \lim \limits _{\theta \rightarrow \infty }\Pr \left( X_{i} \le x \left| \right. \sum _{j=1}^{N(X_{i})}Y_{ij}=0\right) \Pr \left( \sum _{j=1}^{N(X_{i})}Y_{ij}=0\right). \end{aligned}$$
(7.15)

Since \(X_{i}\) is independent of \(Y_{ij}, j=1,2,\ldots , N(X_{i})\), Eq. (7.15) becomes

$$ \lim \limits _{\theta \rightarrow \infty }\hat{B}(x) = \Pr (X_{i} \le x)\cdot \lim \limits _{\theta \rightarrow \infty }\Pr \left( \sum _{j=1}^{N(X_{i})}Y_{ij}=0\right). $$
(7.16)

From Lemma 4.3 (2), we know that \( \lim \limits _{\theta \rightarrow \infty }\Pr (\sum _{j=1}^{N(X_{i})}Y_{ij}=0)=1- \lim \limits _{\theta \rightarrow \infty }\Pr (\sum _{j=1}^{N(X_{i})}Y_{ij}\ne 0)=1\), and then the following equation holds:

$$ \lim \limits _{\theta \rightarrow \infty }\hat{B}(x)=Pr(X_{i} \le x)=B(X). $$
(7.17)

In virtue of Continuity Theorem (see Feller 1971), the proof is completed. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, S., Wang, J. & Liu, B. Equilibrium joining strategies in the Mn/G/1 queue with server breakdowns and repairs. Oper Res Int J 20, 2163–2187 (2020). https://doi.org/10.1007/s12351-018-0407-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12351-018-0407-0

Keywords

Mathematics Subject Classification

Navigation