Skip to main content
Log in

Quickest flow over time network interdiction: mathematical formulation and a solution method

  • Original Paper
  • Published:
Operational Research Aims and scope Submit manuscript

Abstract

This paper proposes a new problem entitled as “the quickest flow over time network interdiction problem”. This problem stands for removing some of network links using a limited interdiction resource with the aim of maximizing the minimum time required to transfer a predefined flow value through a given network. We formulate the quickest flow problem as a linear fractional programming problem and then, we transform it to a linear formulation. Using the linear formulation of the quickest flow problem we formulate the quickest flow network interdiction problem as a mixed integer linear programming problem. We also provide an improved formulation for the quickest flow network interdiction problem which is computationally more efficient than basic linear formulation. Finally, we apply the basic and improved formulations of the quickest flow network interdiction problem on a real world network and several grid networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Afshari-Rad M, Taghizadeh-Kakhki H (2013) Maximum dynamic network flow interdiction problem: new formulation and solution procedures. Comput Ind Eng 65(4):531–536

    Article  Google Scholar 

  • Ahuja RK, Magnanti TL, Orlin JB (1993) Network flows: theory, algorithms, and applications. Prentice-Hall Inc, Upper Saddle River

    Google Scholar 

  • Akgün I, Tansel Bc, Wood R (2011) The multi-terminal maximum-flow network-interdiction problem. Eur J Oper Res 211(2):241–251. https://doi.org/10.1016/j.ejor.2010.12.011

    Article  Google Scholar 

  • Anderson EJ, Philpott AB (1994) Optimisation of flows in networks over time. In: Kelly FP (ed) Probability, statistics and optimisation, chap. 27. Wiley, New York, pp 369–382

    Google Scholar 

  • Benders J (1962) Partioning procedures for solving mixed integer variables programming problems. Numer Math 4:238–252

    Article  Google Scholar 

  • Burkard RE, Dlaska K, Klinz B (1993) The quickest flow problem. ZOR Methods Models Oper Res 37(1):31–58

    Article  Google Scholar 

  • Charnes A, Cooper W (1962) Programming with linear fractional functionals. Nav Res Logist Q 9:181–186

    Article  Google Scholar 

  • Corley H, Sha D (1982) Most vital links and nodes in weighted networks. Oper Res Lett 1(4):157–160

    Article  Google Scholar 

  • Cormican K, Morton D, Wood R (1998) Stochastic network interdiction. Oper Res 46:184–197

    Article  Google Scholar 

  • Fleischer LK (2001) Faster algorithms for the quickest transshipment problem. SIAM J Optim 12(1):18–35

    Article  Google Scholar 

  • Fleischer L, Skutella M (2002) The quickest multicommodity flow problem. Springer, Berlin, pp 36–53

    Google Scholar 

  • Fleischer L, Skutella M (2007) Quickest flows over time. SIAM J Comput 36(6):1600–1630

    Article  Google Scholar 

  • Fleischer L, Tardos É (1998) Efficient continuous-time dynamic network flow algorithms. Oper Res Lett 23(3–5):71–80

    Article  Google Scholar 

  • Ford L, Fulkerson D (1958) Constructing maximal dynamic flows from static flows. Oper Res 6:419–433

    Article  Google Scholar 

  • Fulkerson D, Harding G (1977) Maximizing the minimum source-sink path subject to a budget constraint. Math Program 13:116–118

    Article  Google Scholar 

  • Ghare P, Montgomery D, Turner T (1971) Optimal interdiction policy for a flow network. Nav Res Logist Q 18:37–45

    Article  Google Scholar 

  • Golden B (1978) A problem in network interdiction. Nav Res Logist Q 25:711–713

    Article  Google Scholar 

  • Hoppe B, Tardos É (2000) The quickest transshipment problem. Math Oper Res 25(1):36–62

    Article  Google Scholar 

  • Ionac D (2001) Some duality theorems for linear-fractional programming having the coefficients in a subfield \(k\) of real numbers. Studia Universitatis Babeş-Bolyai Mathematica XLV I(4):69–73

    Google Scholar 

  • Israeli E (1999) System interdiction and defense. Ph.D. thesis, Operations Research Department, Naval Postgraduate School, Monterey, California

  • Israeli E, Wood R (2002) Shortest path network interdiction. Networks 40:97–111

    Article  Google Scholar 

  • Lim C, Smith C (2007) Algorithms for discrete and continuous multicommodity flow network interdiction problems. IIE Trans 39:15–26

    Article  Google Scholar 

  • Lin KC, Chern MS (1993) The fuzzy shortest path problem and its most vital arcs. Fuzzy Sets Syst 58:343–353

    Article  Google Scholar 

  • Lin M, Jaillet P (2015) On the quickest flow problem in dynamic networks: a parametric min-cost flow approach. In: Proceedings of the twenty-sixth annual ACM-SIAM symposium on discrete algorithms

  • Lunday BJ, Sherali HD (2010) A dynamic network interdiction problem. Informatica 21(4):553–574

    Article  Google Scholar 

  • Malik K, Mittal A, Gupta S (1989) The k most vital arcs in the shortest path problem. Oper Res Lett 8:223–227

    Article  Google Scholar 

  • McMasters A, Mustin T (1970) Optimal interdiction of a supply network. Nav Res Logist 17:261–268

    Article  Google Scholar 

  • Morowati-Shalilvand S, Mehri-Tekmeh J (2012) Finding most vital links over time in a flow network. Int J Optim Control Theor Appl 2(2):173–186

    Article  Google Scholar 

  • Murty KG (1983) Linear programming. Wiley, New York

    Google Scholar 

  • Royset JO, Wood RK (2007) Solving the bi-objective maximum-flow network-interdiction problem. INFORMS J Comput 19(2):175–184

    Article  Google Scholar 

  • Schrijver A (1986) Theory of linear and integer programming. Wiley, New York

    Google Scholar 

  • Skutella M (2009) An introduction to network flows over time. In: Cook W, Lovasz L, Vygen J (eds) Research trends in combinatorial optimization. Springer, Berlin

    Google Scholar 

  • Stancu-Minasian IM, Tigan S (1993) On some methods for solving fractional programming problems with inexact data. Studii si Cercetari Matematice 45(6):517–532

    Google Scholar 

  • Whiteman P (1999) Improving single strike effectiveness for network interdiction. Mil Oper Res 4:15–30

    Article  Google Scholar 

  • Wollmer RD (1963) Some methods for determining the most vital link in a railway network. RAND Memorandum RM-3321-ISA

  • Wollmer RD (1970) Algorithm for targeting strikes in a lines-of-communication network. Oper Res 18:497–515

    Article  Google Scholar 

  • Wood RK (1993) Deterministic network interdiction. Math Comput Model 17:1–18

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the useful comments of the reviewers and the kind assistance of the editors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahram Morowati-Shalilvand.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morowati-Shalilvand, S., Shahmorad, S., Mirnia, K. et al. Quickest flow over time network interdiction: mathematical formulation and a solution method. Oper Res Int J 21, 1179–1209 (2021). https://doi.org/10.1007/s12351-019-00472-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12351-019-00472-6

Keywords

Navigation