Skip to main content
Log in

Finding the strong efficient frontier and strong defining hyperplanes of production possibility set using multiple objective linear programming

  • Original paper
  • Published:
Operational Research Aims and scope Submit manuscript

Abstract

Data envelopment analysis (DEA) models use the frontier of the production possibility set (PPS) to evaluate decision making units (DMUs). However, the explicit-form equations of the frontier cannot be obtained using the traditional DEA models. To fill this gap, the current paper proposes an algorithm to generate all strong-efficient DMUs and the explicit-form equations of the strong-efficient frontier and the strong defining hyperplanes for the PPS with the variable returns to scale (VRS) technology. The algorithm is based on a multiple objective linear programming (MOLP) problem in the DEA methodology, which is solved through the multicriteria simplex method. Also, Isermann’s test is employed to specify strong-efficient nonbasic variables in each strong-efficient multicriteria simplex table. Before presenting the algorithm, a theoretical framework is introduced to characterize the relationships between the feasible region in the decision space of the MOLP problem and the PPS with the VRS technology. It is shown that the algorithm which has four phases is finitely convergent and has less computational complexity than other algorithms in the related literature. Finally, two examples are used to illustrate the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amirteimoori A, Kordrostami S (2012) Generating strong defining hyperplanes of the production possibility set in data envelopment analysis. Appl Math Lett 25:605–609

    Article  Google Scholar 

  • Aparicio J, Ruiz JL, Sirvent I (2007) Closest targets and minimum distance to the pareto-efficient frontier in DEA. J Product Anal 28:209–218

    Article  Google Scholar 

  • Banker RD, Charnes A, Cooper WW (1984) Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag Sci 30:1078–1092

    Article  Google Scholar 

  • Banker RD, Cooper WW, Seiford LM, Thrall RM, Zhu J (2004) Returns to scale in different DEA models. Eur J Oper Res 154:345–362

    Article  Google Scholar 

  • Bazaraa MS, Jarvis JJ, Sherali HD (1990) Linear programming and network flows, 4th edn. Wiley, New York

    Google Scholar 

  • Charnes A, Cooper WW, Rhodes E (1978) Measuring the efficiency of decision making units. Eur J Oper Res 2:429–444

    Article  Google Scholar 

  • Charnes A, Cooper WW, Rhodes E (1981) Evaluating program and managerial efficiency: an application of data envelopment analysis to program follow through. Manag Sci 27:668–697

    Article  Google Scholar 

  • Cooper WW, Park KS, Pastor Ciurana JT (2000) Marginal rates and elasticities of substitution with additive models in DEA. J Product Anal 13:105–123

    Article  Google Scholar 

  • Doyle J, Green R (1993) Data envelopment analysis and multiple criteria decision making. Omega 21:713–715

    Article  Google Scholar 

  • Farrell MJ (1957) The measurement of productive efficiency. J R Stat Soc 120:253–281

    Google Scholar 

  • Frei F, Harker P (1999) Projections onto efficient frontiers: theoretical and computational extensions to DEA. J Product Anal 11:275–300

    Article  Google Scholar 

  • Friedman L, Sinuany-Stern Z (1998) Combining ranking scales and selecting variables in the DEA context: the case of industrial branches. Comput Oper Res 25:781–791

    Article  Google Scholar 

  • Fukuyama H, Sekitani K (2012) Decomposing the efficient frontier of the DEA production possibility set into a smallest number of convex polyhedrons by mixed integer programming. Eur J Oper Res 221:165–174

    Article  Google Scholar 

  • Golany B (1988) An interactive MOLP procedure for the extension of DEA to effectiveness analysis. J Oper Res Soc 39:725–734

    Article  Google Scholar 

  • Hadi-Vencheh A, Jablonsky J, Esmaeilzadeh A (2015) The slack-based measure model based on supporting hyperplanes of production possibility set. Expert Syst Appl 42:6522–6529

    Article  Google Scholar 

  • Hosseinzadeh Lotfi F, Noora AA, Jahanshahloo GR, Jablonsky J, Mozaffari MR, Gerami J (2009) An MOLP based procedure for finding efficient units in DEA models. Cent Eur J Oper Res 17:1–11

    Article  Google Scholar 

  • Hosseinzadeh Lotfi F, Jahanshahloo GR, Mozaffari MR, Gerami J (2011) Finding DEA-efficient hyperplanes using MOLP efficient faces. J Comput Appl Math 235:1227–1231

    Article  Google Scholar 

  • Isermann H (1977) The enumeration of the set of all efficient solutions for a linear multiple objective program. Oper Res Q 28:711–725

    Article  Google Scholar 

  • Jahanshahloo GR, Hosseinzadeh F, Shoja N, Sanei M, Tohidi G (2005) Sensitivity and stability analysis in data envelopment analysis. J Oper Res Soc 56:342–345

    Article  Google Scholar 

  • Jahanshahloo GR, Hosseinzadeh Lotfi F, Zhiani Rezai H, Rezai Balf F (2007) Finding strong defining hyperplanes of production possibility set. Eur J Oper Res 177:42–54

    Article  Google Scholar 

  • Jahanshahloo GR, Shirzadi A, Mirdehghan SM (2009) Finding strong defining hyperplanes of PPS using multiplier from. Eur J Oper Res 194:933–938

    Article  Google Scholar 

  • Jahanshahloo GR, Hosseinzadeh Lotfi F, Akbarian D (2010) Finding weak defining hyperplanes of PPS of the BCC model. Appl Math Model 34:3321–3332

    Article  Google Scholar 

  • Joro T, Korhonen P, Wallenius J (1998) Strucural comparision of data envelopment analysis and multiple objective linear programming. Manag Sci 44:962–970

    Article  Google Scholar 

  • Keshavarz E, Toloo M (2015) Efficiency status of a feasible solution in the multi-objective integer linear programming problems: a DEA methodology. Appl Math Model 39:3236–3247

    Article  Google Scholar 

  • Korhonen P (1997) Searching the efficient frontier in data envelopment analysis. Int Inst Appl Syst Anal. https://doi.org/10.1007/978-1-4615-0843-4_24

    Article  Google Scholar 

  • Murty KG (1983) Linear programming. Wiley, Etobicoke

    Google Scholar 

  • Olesen OB, Petersen NC (1996) Indicators of ill-conditioned data sets and model misspecification in data envelopment analysis: an extended facet approach. Manag Sci 42:205–219

    Article  Google Scholar 

  • Olesen OB, Petersen NC (2003) Identification and use of efficient faces and facets in DEA. J Prod Anal 20:323–360

    Article  Google Scholar 

  • Rosen D, Schaffnit C, Paradi JC (1998) Marginal rates and two-dimensional level curves in DEA. J Product Anal 9:205–232

    Article  Google Scholar 

  • Russell RR, Schworm W (2006) Efficiency measurement on convex polyhedral (DEA) technologies: an axiomatic approach. http://www.economics.adelaide.edu.au/workshops/doc/russell1.pdf

  • Steuer RE (1986) Multiple criteria optimization: theory, computation, and application. Wiley, New York

    Google Scholar 

  • Stewart TJ (1996) Relationships between data envelopment analysis and multicriteria decision analysis. J Oper Res Soc 47:654–665

    Article  Google Scholar 

  • Sueyoshi T, Sekitani K (2007a) Measurement of returns to scale using a non-radial DEA model: a range-adjusted measure approach. Eur J Oper Res 176:1918–1946

    Article  Google Scholar 

  • Sueyoshi T, Sekitani K (2007b) The measurement of returns to scale under a simultaneous occurrence of multiple solutions in a reference set and a supporting hyperplane. Eur J Oper Res 181:549–570

    Article  Google Scholar 

  • Washio S, Yamada S, Tanaka T, Tanino T (2012) Improvements by analyzing the efficient frontier in DEA. Eur J Oper Res 217:173–184

    Article  Google Scholar 

  • Yu PL, Zeleny M (1975) The set of all nondominated solutions in linear cases and multicriteria simplex method. J Math Anal Appl 49:430–468

    Article  Google Scholar 

  • Yu G, Wei Q, Brockett P, Zhu L (1996) Construction of all DEA efficient surfaces of the production possibility set under the generalized data envelopment analysis model. Eur J Oper Res 95:491–510

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhad Hosseinzadeh Lotfı.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

1.1 Proof of Theorem 2

Suppose \(\chi ^*\) is a Pareto optimal solution for the problem (9). It is proven that \((x^*,y^*)\) is an efficient unit in \(T_V\). By contradiction, suppose \((x^*,y^*)\) is not efficient. Hence, there exists \(({\widehat{x}},{\widehat{y}})\in T_V\) such that \((-{\widehat{x}},{\widehat{y}})\ge (-{x}^*,{y}^*)\). Because \(({\widehat{x}},{\widehat{y}})\in T_V\), there exist \({\widehat{\lambda }}\geqslant 0\) and slack variables \({\widehat{s}}^-\geqslant 0\) and \({\widehat{s}}^+\geqslant 0\) such that

$$\begin{aligned} \begin{array}{rlll} &&\displaystyle \sum _{j=1}^n{\widehat{\lambda }}_{j}{\overline{x}}_{i j}+{\widehat{s}}_{i}^-={\widehat{x}}_{i},&i=1,\ldots ,m,\\ &&\displaystyle \sum _{j=1}^n{\widehat{\lambda }}_{j}{\overline{y}}_{r j}-{\widehat{s}}_{r}^+={\widehat{y}}_{r},&r=1,\ldots ,s,\\ &&\displaystyle \sum _{j=1}^n{\widehat{\lambda }}_{j}=1. \end{array} \end{aligned}$$
(26)

Constraints (26) imply that \({\widehat{\chi }}=({\widehat{\lambda }},{\widehat{s}}^-,{\widehat{s}}^+,{\widehat{x}},{\widehat{y}})\) is a feasible solution for (9) with \((-{\widehat{x}},{\widehat{y}})\ge (-{x}^*,{y}^*)\), which is a contradiction.

Conversely, suppose \((x^*,y^*)\) is an efficient unit in \(T_V\). It is proven that \(\chi ^*\) is a Pareto optimal solution for (9). Similarly, as \((x^*,y^*)\in T_V\), there are \(\lambda ^*\geqslant 0\) and slack variables \(s^{-*}\geqslant 0\) and \(s^{+*}\geqslant 0\) with

$$\begin{aligned} \begin{array}{rlll} &&\displaystyle \sum _{j=1}^n\lambda _{j}^*{\overline{x}}_{i j}+s_{i}^{-*}=x_{i}^*,&i=1,\ldots ,m,\\ &&\displaystyle \sum _{j=1}^n\lambda _{j}^*{\overline{y}}_{r j}-s_{r}^{+*}=y_{r}^*,&r=1,\ldots ,s,\\ &&\displaystyle \sum _{j=1}^n\lambda _{j}^*=1. \end{array} \end{aligned}$$
(27)

Constraints (27) imply that \({\chi }^*\) is a feasible solution for (9). With \((x^*,y^*)\) being an efficient unit in \(T_V\), there does not exist any \(({\widehat{x}},{\widehat{y}})\in T_V\) where \((-{\widehat{x}},{\widehat{y}})\ge (-{x}^*,{y}^*)\). Therefore, \(\chi ^*\) is a Pareto optimal solution for (9). \(\square \)

1.2 Proof of Theorem 3

Suppose \({\chi }^\imath \) is an extreme point in \(S^\prime \). It is proven that \(({\lambda }^\imath ,{x}^\imath ,{y}^\imath )\) is an extreme point in \({\overline{S}}\). With \({\chi }^\imath \) being an extreme point, for each \((\lambda ^1,s^{-1},s^{+1},x^1,y^1)\) and \((\lambda ^2,s^{-2},s^{+2},x^2,y^2)\) belonging to \(S^\prime \) and \(\mu \in (0,1)\), where

$$\begin{aligned} ({\lambda }^\imath ,{s}^{-\imath },{s}^{+\imath },{x}^\imath ,{y}^\imath )=\mu (\lambda ^1,s^{-1},s^{+1},x^1,y^1)+(1-\mu )(\lambda ^2,s^{-2},s^{+2},x^2,y^2), \end{aligned}$$
(28)

we have

$$\begin{aligned} ({\lambda }^\imath ,{s}^{-\imath },{s}^{+\imath },{x}^\imath ,{y}^\imath )=(\lambda ^1,s^{-1},s^{+1},x^1,y^1)=(\lambda ^2,s^{-2},s^{+2},x^2,y^2). \end{aligned}$$
(29)

Since \((\lambda ^1,s^{-1},s^{+1},x^1,y^1)\) and \((\lambda ^2,s^{-2},s^{+2},x^2,y^2)\) belong to \(S^\prime \), points \((\lambda ^1,x^1,y^1)\) and \((\lambda ^2,x^2,y^2)\) are in \({\overline{S}}\). By contradiction, suppose \(({\lambda }^\imath ,{x}^\imath ,{y}^\imath )\) is not an extreme point. Hence, there exist two points \((\lambda ^1,x^1,y^1)\) and \((\lambda ^2,x^2,y^2)\) belonging to \({\overline{S}}\) and \(\mu \in (0,1)\) such that

$$\begin{aligned} ({\lambda }^\imath ,{x}^\imath ,{y}^\imath )=\mu (\lambda ^1,x^1,y^1)+(1-\mu )(\lambda ^2,x^2,y^2). \end{aligned}$$
(30)

(29) and (30) result in

$$\begin{aligned} ({\lambda }^\imath ,{x}^\imath ,{y}^\imath )=(\lambda ^1,x^1,y^1)=(\lambda ^2,x^2,y^2), \end{aligned}$$
(31)

which is a contradiction.

Conversely, suppose \(({\lambda }^\imath ,{x}^\imath ,{y}^\imath )\) is an extreme point in \({\overline{S}}\). It is proven that \({\chi }^\imath \) is an extreme point in \(S^\prime \). By contradiction, suppose \({\chi }^\imath \) is not an extreme point. Therefore, there exist distinct points \((\lambda ^1,s^{-1},s^{+1},x^1,y^1)\) and \((\lambda ^2,s^{-2},s^{+2},x^2,y^2)\) belonging to \(S^\prime \) and \(\mu \in (0,1)\) with

$$\begin{aligned} ({\lambda }^\imath ,{s}^{-\imath },{s}^{+\imath },{x}^\imath ,{y}^\imath )=\mu (\lambda ^1,s^{-1},s^{+1},x^1,y^1)+(1-\mu )(\lambda ^2,s^{-2},s^{+2},x^2,y^2). \end{aligned}$$
(32)

(32) implies that \(({\lambda }^\imath ,{x}^\imath ,{y}^\imath )=\mu (\lambda ^1,x^1,y^1)+(1-\mu )(\lambda ^2,x^2,y^2)\) where \((\lambda ^1,x^1,y^1)\) and \((\lambda ^2,x^2,y^2)\) are two distinct points belonging to \({\overline{S}}\) and \(\mu \in (0,1)\), which is a contradiction. \(\Box \)

1.3 Proof of Theorem 4

In each basic feasible solution \(\chi ^\imath \), there are two cases for \((x^\imath ,y^\imath )\in \mathfrak {R}^{m+s}\):

  1. 1.

    Consider \((x^\imath ,y^\imath )>0\). To construct the basis B with the rank \(m+s+1\), we should select only one column from the constraint coefficients matrix A associated with the variable \(\lambda _{j}\) \((j\in \{1,\ldots ,n\})\). Therefore, \(\displaystyle \sum \nolimits _{j=1}^n \lambda _j^\imath =1\) and \(\lambda _j^\imath \geqslant 0\) \( (j=1,\ldots ,n) \) result in \(\lambda ^\imath =e_j\) \( (j \in \{1,\ldots ,n\}) \).

  2. 2.

    Consider \((x^\imath ,y^\imath )\ge 0\), in which there exists at least one zero component. Suppose \(x_{i}\) and \( s_i \) are the nonbasic variables. Hence, the ith constraint of the problem (9) is converted to:

    $$\begin{aligned} \lambda _1^\imath {\overline{x}}_{i1}+\lambda _2^\imath {\overline{x}}_{i2}+\ldots +\lambda _n^\imath {\overline{x}}_{i n}+0-0=0. \end{aligned}$$
    (33)

    Given this assumption, two columns of the constraint coefficient matrix A associated with the variables \(\lambda _{j^\prime }\) and \(\lambda _{j^{\prime \prime }}\,(j^\prime ,j^{\prime \prime }\in \{1,\ldots ,n\},\,j^\prime \ne j^{\prime \prime })\) should be selected to construct the basis B. However, in (33), \(\lambda _{j^\prime }^\imath \) and \(\lambda _{j^{\prime \prime }}^\imath \) cannot be simultaneously positive because they result in a contradiction for constructing the \(i\hbox {th}\) row of the basis B (a zero row is appeared). Therefore, \(\chi ^\imath \) is a degenerate basic feasible solution in \( S^\prime \). Finally, \(\displaystyle \sum \nolimits _{j=1}^n \lambda _j^\imath =1\) and \(\lambda _j^\imath \geqslant 0\) \( (j=1,\ldots ,n) \) lead to \(\lambda ^\imath =e_j\) \( (j \in \{1,\ldots ,n\}) \). Similarly, this contradiction occurs for \(y_{r}^\imath =0\). \(\square \)

1.4 Proof of Theorem 5

Theorem 4 implies that in each basic feasible solution \(\chi ^\imath \) belonging to \(S^\prime \), \({\lambda }^\imath \) is a unit vector \(e_{j} \in \mathfrak {R}^n\) \((j \in \{1,\ldots ,n\})\) whose \( j\hbox {th}\) element is 1 and the others are 0. Without loss of generality, suppose \({\lambda }^\imath =e_1 \in \mathfrak {R}^n\). Regarding the basic feasible solution \(({\lambda }^\imath =e_1,{s}^{-\imath },{s}^{+\imath },{x}^\imath ,{y}^\imath )\), the constraints of the problem (9) are converted to:

$$\begin{aligned} \begin{array}{rlll} &&{\overline{x}}_{i 1}+{s}_{i}^{-\imath } - {x}_{i}^\imath =0,&i=1,\ldots ,m,\\ &&{\overline{y}}_{r 1}-{s}_{r}^{+\imath } - {y}_{r}^\imath =0,&r=1,\ldots ,s,\\ &&1=1. \end{array} \end{aligned}$$
(34)

System (34) implies that there exist two cases for \({s}_{i}^{-\imath }\) \((i=1,\ldots ,m)\):

  1. 1.

    All of the input slack variables are zero i.e. \({s}^{-\imath }=0\), and the proof is complete in this case.

  2. 2.

    There exists at least one nonzero input slack variable. Without loss of generality, suppose \({s}_1^{-\imath }> 0\), which means that \({s}_1^{-}\) is a basic variable. Hence, \({x}_1\) cannot be a basic variable, and thus, \({x}_1^\imath =0\). Then, the first constraint in (34) is converted to:

    $$\begin{aligned} \begin{array}{rlll}&\,&{\overline{x}}_{1 1}+{s}_1^{-\imath } - 0=0. \end{array} \end{aligned}$$
    (35)

    In view of the fact that \({\overline{x}}_{1 1}\geqslant 0\) and \({s}_1^{-\imath }> 0\), inconsistent is the constraint (35).

As a consequence, all the input slack variables for each basic feasible solution in \( S^\prime \) are zero. \(\square \)

1.5 Proof of Theorem 6

Suppose \(({\lambda }^\imath ,{s}^{-\imath },{s}^{+\imath }=0,{x}^\imath ,{y}^\imath )\) is a basic feasible solution in \( S^\prime \). It is proven that \(({x}^\imath ,{y}^\imath )\) is a DMU in \( T_V \). With \(({\lambda }^\imath ,{s}^{-\imath },{s}^{+\imath }=0,{x}^\imath ,{y}^\imath )\) being a basic feasible solution, Theorems 4 and 5 result in \({\lambda }^\imath =e_{j} \in \mathfrak {R}^n\,(j\in \{1,\ldots ,n\})\) and \({s}^{-\imath }=0 \in \mathfrak {R}^m\). As regards the basic feasible solution \(({\lambda }^\imath =e_{j},{s}^{-\imath }=0,{s}^{+\imath }=0,{x}^\imath ,{y}^\imath )\), the constraints of the problem (9) are converted to:

$$\begin{aligned} \begin{array}{rlll} &&\displaystyle \sum _{j=1}^ne_{j}{\overline{x}}_{i j}+0={x}_{i}^\imath ,&i=1,\ldots ,m,\\ &&\displaystyle \sum _{j=1}^ne_{j}{\overline{y}}_{r j}-0={y}_{r}^\imath ,&r=1,\ldots ,s,\\ &&\displaystyle \sum _{j=1}^ne_{j}=1. \end{array} \end{aligned}$$
(36)

System (36) implies that \(({x}^\imath ,{y}^\imath )\) is one of the n observed DMUs.

Conversely, suppose \(({x}^\imath ,{y}^\imath )\) is a DMU in \(T_V\). It is proven that \(({\lambda }^\imath ,{s}^{-\imath },{s}^{+\imath }=0,{x}^\imath ,{y}^\imath )\) is a basic feasible solution in \( S^\prime \). Without loss of generality, suppose \(({x}^\imath ,{y}^\imath )=({\overline{x}}_1,{\overline{y}}_1)\). Therefore, there exists a feasible solution \(({\lambda }^\imath =e_1,{s}^{-\imath }=0,{s}^{+\imath }=0,{x}^\imath ={\overline{x}}_1,{y}^\imath ={\overline{y}}_1)\) in \(S^\prime \). Now, it is shown to be a basic solution. There exist two cases for \(({\overline{x}}_1,{\overline{y}}_1)\):

  1. 1.

    All of the \({\overline{x}}_{i 1}\,(i=1,\ldots ,m)\) and \({\overline{y}}_{r 1}\,(r=1,\ldots ,s)\) are positive. Hence, the column vectors corresponding to the basic variables \({\lambda }_1 ,{x}_1 ,\ldots ,{x}_m ,{y}_1 ,\ldots ,{y}_s \) in the constraint coefficient matrix A are as follows:

    $$\begin{aligned} {B}= \begin{bmatrix} {{\overline{x}}}_{11}&-1&\ldots&0&0&\ldots&0\\ \vdots&\vdots&\ddots&\vdots&\vdots&\vdots&\vdots \\ {{\overline{x}}}_{m1}&0&\ldots&-1&0&\ldots&0\\ {{\overline{y}}}_{11}&0&\ldots&0&-1&\ldots&0\\ \vdots&\vdots&\vdots&\vdots&\vdots&\ddots&\vdots \\ {{\overline{y}}}_{s1}&0&\ldots&0&0&\ldots&-1\\ 1&0&\ldots&0&0&\ldots&0 \\ \end{bmatrix}. \end{aligned}$$
    (37)

    It is obvious that the set of the column vectors for the constructed basis B is linearly independent in \(\mathfrak {R}^{m+s+1}\); it completes the proof of this case.

  2. 2.

    Some of the \({\overline{x}}_{i 1}\,(i \in \{1,\ldots ,m\})\) and/or \({\overline{y}}_{r 1}\,(r \in \{1,\ldots ,s\})\) are zero. Hence, with respect to the case 1, the set of the column vectors

    $$\begin{aligned} \left\{ \begin{bmatrix} {\overline{x}}_{i1}\\ {\overline{y}}_{r1}\\ 1\\ \end{bmatrix} :\, {\lambda }_1>0 \right\} \bigcup \left\{ \begin{bmatrix} -I_{.i}\\ 0\\ 0\\ \end{bmatrix} :\, {x}_{i}>0 \right\} \bigcup \left\{ \begin{bmatrix} 0\\ -I_{.r}\\ 0\\ \end{bmatrix} :\, {y}_{r}>0 \right\} \end{aligned}$$
    (38)

    is linearly independent in \(\mathfrak {R}^{m+s+1}\) (Murty 1983, p. 118), and the proof is complete in this case. \(\square \)

1.6 Proof of Theorem 8

There exists at least one feasible solution for the DEA weighted-sum problem (13) as \(\lambda _o=1\) \(( o\in \{1,\ldots ,n\} )\), \(\lambda _{j}=0\) \((j=1,\ldots ,n,\,j\ne o)\), \(s_{i}^-=0\,(i=1,\ldots ,m)\), \(s_{r}^+=0,\,(r=1,\ldots ,s)\), \(x_{i}={\overline{x}}_{i o}\,(i=1,\ldots ,m)\), and \(y_{r}={{\overline{y}}_{r o}\,(r=1,\ldots ,s)}\); therefore, this problem is always feasible. It is clear that there is no extreme direction \(d=(d^\lambda ,d^x,d^y)\) with \(d^y\ne 0\) in \({\overline{S}}\), which implies that there is no extreme direction in \(S^\prime \) with \(d^y\ne 0\). Consequently, given the objective function of the DEA weighted-sum problem (13), by considering any positive weighting vector \( \vartheta \in \mathfrak {R}^{m+s} \), the optimal objective value never increases indefinitely. \(\Box \)

1.7 Proof of Theorem 9

Let \(({\overline{\delta }}^*,{\overline{u}}^*)\) be the optimal solution for the DEA Isermann subproblem (14). Its dual

$$\begin{aligned} \begin{array}{rlll} &\hbox {Min}&\displaystyle \sum _{l=1}^{m+s}\vartheta _l\\ &\hbox {s.t.}&\displaystyle \sum _{l=1}^{m+s}\vartheta _l{\overline{c}}_{lt}^\imath \geqslant 0,&t\in {\widetilde{N}}^\imath /{\widetilde{P}}^\imath ,\\ &&\displaystyle \sum _{l=1}^{m+s}\vartheta _l{\overline{c}}_{l{\overline{r}}}^\imath =0,&{\overline{r}}\in {\widetilde{P}}^\imath ,\\ &&\vartheta _l\geqslant 1,&l=1,\ldots ,m+s, \end{array} \end{aligned}$$
(39)

has an optimal solution \(\vartheta ^*=(\vartheta ^*_1,\ldots ,\vartheta ^*_m,\vartheta ^*_{m+1},\ldots ,\vartheta ^*_{m+s})\). By considering the obtained weighting vector \(\vartheta ^*\) for the objective function of the DEA weighted-sum problem (13), the optimal solution \(\chi ^\imath \) is obtained. On the other hand, in each nondegenerate pivot step for this problem, the theorems provided in Sect. 3.1 make sure that the nonbasic entering variable and the basic leaving variable are corresponding to \(\lambda _{{\overline{r}}}\) and \(\lambda _\tau \) \(({\overline{r}},\tau \in \{1,\ldots ,n\},\,{\overline{r}}\ne \tau )\), i.e the pivot element is \(a_{\tau {\overline{r}}}=1\) which lies in the constraint corresponding to \(\displaystyle \sum \nolimits _{j=1}^n\lambda^\imath _{j}=1\). Then, each basic feasible solution \(\chi ^\jmath \) which can be evaluated by pivoting in the \( {\overline{r}} \)th column \( ({\overline{r}}\in {\widetilde{P}}^\imath ) \) is an optimal solution for the DEA weighted-sum problem (13) with \( \vartheta =\vartheta ^* \). Hence, \(\chi ^\jmath \) is a Pareto optimal basic feasible solution for the problem (9) which is dual feasible and adjacent to \(\chi ^\imath \). \(\square \)

1.8 Proof of Theorem 10

With \(\lambda _{{\overline{r}}}\,({\overline{r}}\in {\widetilde{P}}^\imath )\) entering the basis \(\chi ^\imath \) and after performing the efficient pivot operation, the next Pareto optimal basic feasible solution \(\chi ^\jmath \) is obtained. For a nondegenerate pivot, the minimum ratio test is equal to 1 \((\theta =1)\). Hence, \(Z(\chi ^\jmath )=Z(\chi ^\imath )-\theta ({\overline{c}}_{:{\overline{r}}})^\imath \) leads to \(Z(\chi ^\imath )-Z(\chi ^\jmath )=({\overline{c}}_{:{\overline{r}}})^\imath \) where \(({\overline{c}}_{:{\overline{r}}})^\imath \) is an \(m+s\) column vector in the criteria row of the efficient multicriteria simplex table for \(\chi ^\imath \). From a geometrical point of view, \(({\overline{c}}_{:{\overline{r}}})^\imath \) is described as the transfer vector of the efficient points \(Z(\chi ^\imath )\) and \(Z(\chi ^\jmath )\) in the feasible region of the criterion space for the problem (9). \(\square \)

1.9 Proof of Theorem 11

The efficient multicriteria simplex table corresponding to \(\chi ^\imath \) is considered. For each maximal index set \(( {\widetilde{P}}^\imath )\) taken by the DEA Isermann subproblem (14), the dual of the subproblem specifies the optimal positive vector \(\vartheta ^*\in \mathfrak {R}^{m+s}\) which is perpendicular to all the transfer vectors \((w_{:{\overline{r}}})^\imath \,({\overline{r}}\in {\widetilde{P}}^\imath )\). Thus, regarding Theorem 10, \(\vartheta ^*\) is the gradient vector of the efficient face in the feasible region of the criterion space for the problem (9) which contains \(Z(\chi ^\imath )\) and all \(Z(\chi ^\jmath )\) \(({\overline{r}}\in {\widetilde{P}}^\imath )\). \(\square \)

1.10 Proof of Theorem 12

Constructing \({\widetilde{U}}^\varepsilon \) ensures the existence of some \({\widetilde{Q}}^\imath \) \((\imath \in {\widetilde{I}})\) so that \({\widetilde{U}}^\varepsilon ={\widetilde{Q}}^\imath \). This implies that the DEA Isermann subproblem (14) with \({\widetilde{P}}^\imath ={\widetilde{Q}}^\imath /{\widetilde{D}}^\imath \) has an optimal solution, and thus, the respective dual problem possesses an optimal solution \(\vartheta ^\varepsilon \). Each \({\widehat{\chi }}=({\widehat{\lambda }},{\widehat{s}}^-,{\widehat{s}}^+,{\widehat{x}},{\widehat{y}}) \in F^\varepsilon \) is an optimal solution for the DEA weighted-sum problem (13) with the positive weighting vector \(\vartheta ^\varepsilon \). In light of Theorem 1, \({\widehat{\chi }}\) is a Pareto optimal solution for the problem (9). Thus, for each \(\varepsilon \in \{1,\dots ,{\overline{\varepsilon }}\}\), \(F^\varepsilon \) is a subset of Pareto optimal solutions for the DEA MOLP problem. Theorem 2 implies that there is an efficient unit \(({\widehat{x}},{\widehat{y}})\) in \(T_V\) corresponding to the Pareto optimal solution \({\widehat{\chi }}\). Consequently, \(T^\varepsilon \) is a subset of efficient units in the frontier of \(T_V\) for each \(\varepsilon \in \{1,\ldots ,{\overline{\varepsilon }}\}\). \(\square \)

1.11 Proof of Theorem 13

Let \(\chi ^o=(\lambda ^o,s^{-o},s^{+o},x^o,y^o)\) be a Pareto optimal solution for the problem (9). Due to Theorem 1, there exists a positive weighting vector \(\vartheta ^o\) such that \(\chi ^o\) is an optimal solution for the DEA weighted-sum problem (13). Let \({\widetilde{I}}^o\) denote the index set of all the Pareto optimal basic feasible solutions while being dual feasible for (9) are optimal in the DEA weighted-sum problem. Then, \(\chi ^o\) can be represented as

$$\begin{aligned} \chi ^o=\displaystyle \sum _{\imath \in {\widetilde{I}}^o}\alpha _\imath (\lambda ^\imath ,s^{-\imath },s^{+\imath },x^\imath ,y^\imath ),\,\,\,\,\displaystyle \sum _{\imath \in {\widetilde{I}}^o}\alpha _\imath =1,\,\,\,\,\alpha _\imath \geqslant 0,\,\,\,\,\imath \in {\widetilde{I}}^o. \end{aligned}$$
(40)

The DEA Isermann subproblem (14) has an optimal solution for each \(\imath \in {\widetilde{I}}^o\) and \({\widetilde{P}}^o={\widetilde{Q}}^o /{\widetilde{D}}^\imath \) where \({\widetilde{Q}}^o=\bigcup _{\jmath \in {\widetilde{I}}^o}{\widetilde{D}}^\jmath \). The search for all maximal index sets in Phase 2 implies that some maximal index sets \({\widetilde{P}}^\imath \) have been provided in a way \({\widetilde{P}}^o\subseteq {\widetilde{P}}^\imath \). From \({\widetilde{P}}^\imath \cup {\widetilde{D}}^\imath \subseteq {\widetilde{U}}^\varepsilon \), for some \(\varepsilon \), the assertion follows. Moreover, (40) results in

$$\begin{aligned} (x^o,y^o)=\displaystyle \sum _{\imath \in {\widetilde{I}}^o}\alpha _\imath (x^\imath ,y^\imath ),\,\,\,\,\displaystyle \sum _{\imath \in {\widetilde{I}}^o}\alpha _\imath =1,\,\,\,\,\alpha _\imath \geqslant 0,\,\,\,\,\imath \in {\widetilde{I}}^o. \end{aligned}$$
(41)

The above-mentioned notes and (41) imply that there exists at least one \(\varepsilon \in \{1,\ldots ,{\overline{\varepsilon }}\}\) so that \((x^o,y^o)\in T^\varepsilon \). \(\square \)

Appendix 2

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghazi, A., Hosseinzadeh Lotfı, F. & Sanei, M. Finding the strong efficient frontier and strong defining hyperplanes of production possibility set using multiple objective linear programming. Oper Res Int J 22, 165–198 (2022). https://doi.org/10.1007/s12351-019-00542-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12351-019-00542-9

Keywords

Navigation