Skip to main content
Log in

On a queueing-inventory system with common life time and Markovian lead time process

  • Original paper
  • Published:
Operational Research Aims and scope Submit manuscript

Abstract

We consider a correlated queueing-inventory system with Markovian arrival of customers, phase type distributed service time and Markovian lead time. Items in each cycle have a common life time. Before the realization of this, a purchased item in a cycle can be cancelled in that cycle itself provided inventory level has not dropped to zero. Common life time and inter-cancellation time follow independent exponential distributions. We exhaustively analyze this system. The special case of customer arrival following a Poisson process and service time exponentially distributed, is shown to yield product form solution, thus extending earlier work to the case of correlated lead time. The inventory replenishment policy is to bring the inventory level to its maximum at the lead time realization. Several numerical illustrations are provided to illustrate the system performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Baek JW, Moon SK (2014) The M/M/1 queue with a production-inventory system and lost sales. Appl Math Comput 233:534–544

    Google Scholar 

  • Baek JW, Bae YH, Lee HW, Ahn S (2018) Continuous-type (s, Q)-inventory model with an attached M/M/1 queue and lost sales. Perform Eval 125:68–79

    Article  Google Scholar 

  • Berman O, Kim E (1999) Stochastic models for inventory managements at service facilities. Commun Stat Stoch Models 15(4):695–718

    Article  Google Scholar 

  • Berman O, Sapna KP (2000) Inventory management at service facilities for systems with arbitrary distributed service times. Commun Stat Stoch Models 16(3–4):343–360

    Article  Google Scholar 

  • Berman O, Sapna KP (2002) Optimal service rates of a service facility with perishable inventory items. Naval Res Logist 49:464–482

    Article  Google Scholar 

  • Berman O, Kaplan EH, Shimshak DG (1993) Deterministic approximations for inventory management at service facilities. IIE Trans 25(5):98–104

    Article  Google Scholar 

  • Chakravarthy SR (2001) The batch Markovian arrival process: a review and future work. In: Krishnamoorthy A et al (eds) Advances in probability theory and stochastic process: Proceedings. Notable Publications, New Jersey, pp 21–49

    Google Scholar 

  • Krishnamoorthy A, Shajin D (2018) Stochastic decomposition in retrial queueing inventory system. RAIRO-Oper Res. https://doi.org/10.1051/ro/2018118

    Article  Google Scholar 

  • Krishnamoorthy A, Viswanath NC (2013) Stochastic decomposition in production inventory with service time. Eur J Oper Res 228(2):358–366

    Article  Google Scholar 

  • Krishnamoorthy A, Lakshmy B, Manikandan R (2011) A survey on inventory models with positive service time. OPSEARCH 48(2):153–169

    Article  Google Scholar 

  • Krishnamoorthy A, Shajin D, Lakshmy B (2015) On a queueing-inventory with reservation, cancellation, common life time and retrial. Ann Oper Res. https://doi.org/10.1007/s10479-015-1849-x

    Article  Google Scholar 

  • Krishnamoorthy A, Benny B, Shajin D (2016) A revisit to queueing-inventory system with reservation, cancellation, common life time. OPSEARCH. https://doi.org/10.1007/s12597-016-0278-1

    Article  Google Scholar 

  • Krishnamoorthy A, Shajin D, Melikov AZ (2019a) On partial and complete blocking set of sets of states in Queueing-inventory model. Appl Comput Math 18(2):189–201

    Google Scholar 

  • Krishnamoorthy A, Shajin D, Narayanan VC (2019b) Inventory with positive service time: a survey. In: Anisimov V, Limnios N (eds) Advanced trends in queueing theory. ISTE and Wiley, London

    Google Scholar 

  • Manikandan R, Nair SS (2019) An M/M/1 queueing-inventory system with working vacations, vacation interruptions and lost sales. Mat Teor Igr Pril 11(3):53–76

    Google Scholar 

  • Manuel P, Sivakumar B, Arivarignan G (2007) A perishable inventory system with service facilities, MAP arrivals and PH-service times. J Syst Sci Syst Eng 16(1):62–73

    Article  Google Scholar 

  • Melikov AZ, Molchanov AA (1992) Stock optimization in transport/storage systems. Cybern Syst Anal 28(3):484–487

    Article  Google Scholar 

  • Neuts MF (1981) Matrix-geometric solutions in stochastic models: an algorithmic approach. The Johns Hopkins University Press, Baltimore (1994 version is Dover Edition)

    Google Scholar 

  • Saffari M, Asmussen S, Haji R (2013) The M/M/1 queue with inventory, lost sale and general lead times. Queueing Syst 75(1):65–77

    Article  Google Scholar 

  • Schwarz M, Sauer C, Daduna H, Kulik R, Szekli R (2006) M/M/1 queueing systems with inventory. Queueing Syst 54:55–78

    Article  Google Scholar 

  • Shajin D, Krishnamoorthy A (2019) On a queueing-inventory system with impatient customers, advanced reservation, cancellation, overbooking and common life time. Oper Res Int J. https://doi.org/10.1007/s12351-019-00475-3

    Article  Google Scholar 

  • Shajin D, Krishnamoorthy A, Dudin AN, Joshua VC, Varghese Jacob (2019) On a queueing-inventory system with advanced reservation and cancellation for the next K time frames ahead: the case of overbooking. Queueing Syst. https://doi.org/10.1007/s11134-019-09631-0

    Article  Google Scholar 

  • Sigman K, Simchi-Levi D (1992) Light traffic heuristic for an M/G/1 queue with limited inventory. Ann Oper Res 40:371–380

    Article  Google Scholar 

Download references

Acknowledgements

First author: Research supported by Kerala State Council for Science, Technology and Environment: 001-07/PDF/2016/KSCSTE in Department of Mathematics, CMS College, Kottayam-686001, India. Second author: Research supported by UGC No. F.6-6/2017-18/EMERITUS-2017-18-GEN-10822 (SA-II) and DST project INT/RUS/RSF/P-15. The authors would like to thank the reviewers for the comments and suggestions that helped in improving the presentation of the paper substantially.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Krishnamoorthy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

$$\begin{aligned} B_0 & = {} \left( {\begin{array}{*{20}c} O &{}\quad {} &{}\quad {} &{}\quad {} \\ {} &{}\quad {I \otimes D_1^{(A)} } &{}\quad {} &{}\quad {} \\ {} &{}\quad {} &{}\quad \ddots &{}\quad {} \\ {} &{}\quad {} &{}\quad {} &{}\quad {I \otimes D_1^{(A)} } \\ \end{array}} \right) ,\\ B_2 & = {} \left( {\begin{array}{*{20}c} O &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} \\ {T^0 \otimes I} &{}\quad {O} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} \\ {} &{}\quad {\gamma \otimes T^0 \otimes I} &{}\quad {O} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} \\ {} &{}\quad {} &{}\quad \ddots &{}\quad {\ddots } &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} \\ {} &{}\quad {} &{}\quad {} &{}\quad {\gamma \otimes T^0 \otimes I} &{}\quad {O} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} \\ {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {\mathcal {U}} &{}\quad {O} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} \\ {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {\mathcal {V}} &{}\quad {O} &{}\quad {} &{}\quad {} &{}\quad {} \\ {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad \ddots &{}\quad {\ddots } &{}\quad {} &{}\quad {} \\ {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {\mathcal {V}} &{}\quad {O} &{}\quad {} \\ {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {{\mathcal {V}}_0 } &{}\quad {O} &{}\quad {O} \\ \end{array}} \right) ,\\ B_{10} & = {} \left( {\begin{array}{*{20}c} O &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} \\ {T^0 \otimes I} &{}\quad {O} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} \\ {} &{}\quad {T^0 \otimes I} &{}\quad {O} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} \\ {} &{}\quad {} &{}\quad \ddots &{}\quad {\ddots } &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} \\ {} &{}\quad {} &{}\quad {} &{}\quad { T^0 \otimes I} &{}\quad {O} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} \\ {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad \tilde{\mathcal{U}} &{}\quad {O} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} \\ {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad \tilde{\mathcal{V}} &{}\quad {O} &{}\quad {} &{}\quad {} &{}\quad {} \\ {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad \ddots &{}\quad {\ddots } &{}\quad {} &{}\quad {} \\ {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad \tilde{\mathcal{V}} &{}\quad {O} &{}\quad {} \\ {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {\tilde{\mathcal{V}}_0 } &{}\quad {O} &{}\quad {O} \\ \end{array}} \right) ,\\ B_1 & = {} \left( {\begin{array}{*{20}c} {{\mathcal {G}}_0 } &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {{\mathcal {G}}'_0 } \\ {{\mathcal {F}}_0 } &{}\quad {{\mathcal {G}}_1 } &{}\quad {{\mathcal {H}}_{S - 1} } &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {{\mathcal {G}}^* } \\ \vdots &{}\quad {} &{}\quad \ddots &{}\quad \ddots &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad \vdots \\ {{\mathcal {F}}_0 } &{}\quad {} &{}\quad {} &{}\quad {{\mathcal {G}}_s } &{}\quad {{\mathcal {H}}_{S - s} } &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {{\mathcal {G}}^* } \\ {{\mathcal {F}} } &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {{\mathcal {G}}_{s + 1} } &{}\quad {{\mathcal {H}}_{S - (s + 1)} } &{}\quad {} &{}\quad {} &{}\quad {{\mathcal {G}}^{**} } \\ \vdots &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad \ddots &{}\quad \ddots &{}\quad {} &{}\quad \vdots \\ {{\mathcal {F}} } &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {{\mathcal {G}}_{S - 1} } &{}\quad {{\mathcal {H}}_1 } &{}\quad {{\mathcal {G}}^{**} } \\ {{\mathcal {F}} } &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {{\mathcal {G}}_S } &{}\quad {{\mathcal {G}}^{**} } \\ {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {{\mathcal {G}}_{S^* } } \\ \end{array}} \right) , \\ \end{aligned}$$

with \(B_0, B_1, B_2\) represent the arrival of customers, transitions within the states and service completion of customers respectively. In \(B_0\), the system has n customers move to \(n+1\) customers without change of inventory level, for \(n \ge 1\). Each matrices is of order \([(2S-s+1)r+1]m_2m_1\).

$$\begin{aligned} B_{00} & = {} \left( {\begin{array}{*{20}c} {{\mathcal {G}}_0 } &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {{\mathcal {G}}'_0 } \\ {{\mathcal {F}}_0 } &{}\quad {\tilde{\mathcal{G}}_1 } &{}\quad {{\mathcal {H}}_{S - 1} } &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {{\mathcal {G}}^* } \\ \vdots &{}\quad {} &{}\quad \ddots &{}\quad \ddots &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad \vdots \\ {{\mathcal {F}}_0 } &{}\quad {} &{}\quad {} &{}\quad {\tilde{\mathcal{G}}_s } &{}\quad {{\mathcal {H}}_{S - s} } &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {{\mathcal {G}}^* } \\ {{\mathcal {F}} } &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {\tilde{\mathcal{G}}_{s + 1} } &{}\quad {{\mathcal {H}}_{S - (s + 1)} } &{}\quad {} &{}\quad {} &{}\quad {{\mathcal {G}}^{**} } \\ \vdots &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad \ddots &{}\quad \ddots &{}\quad {} &{}\quad \vdots \\ {{\mathcal {F}} } &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {\tilde{\mathcal{G}}_{S - 1} } &{}\quad {{\mathcal {H}}_1 } &{}\quad {{\mathcal {G}}^{**} } \\ {{\mathcal {F}} } &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {\tilde{\mathcal{G}}_S } &{}\quad {{\mathcal {G}}^{**} } \\ {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {\tilde{\mathcal{G}}_{S^* } } \\ \end{array}} \right) , \\ B_{01} & = {} \left( {\begin{array}{*{20}c} O &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} \\ {} &{}\quad {\gamma \otimes I \otimes D_1^{(A)} } &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} \\ {} &{}\quad {} &{}\quad \ddots &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} \\ {} &{}\quad {} &{}\quad {} &{}\quad {\gamma \otimes I \otimes D_1^{(A)} } &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} \\ {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad L &{}\quad {} &{}\quad {} &{}\quad {} \\ {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad \ddots &{}\quad {} &{}\quad {} \\ {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad L &{}\quad {} \\ {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {\gamma \otimes I \otimes D_1^{(A)} } \\ \end{array}} \right) \end{aligned}$$

(sub-matrices are given in “Appendix 2”).

Appendix 2

$$\begin{aligned} {\mathcal {U}} & = {} \left( \begin{array}{l} \gamma \otimes T^0 \otimes I \\ \gamma \otimes T^0 \otimes I \\ \end{array} \right) ,{\mathcal {V}} = \left( {\begin{array}{*{20}c} {\gamma \otimes T^0 \otimes I} &{}\quad \\ &{}\quad {\gamma \otimes T^0 \otimes I} \\ \end{array}} \right) ,{\mathcal {V}}_0 = \left( {\begin{array}{*{20}c} {\gamma \otimes T^0 \otimes I} &{}\quad O \\ \end{array}} \right) \\ \tilde{\mathcal{U}} & = {} \left( \begin{array}{l} T^0 \otimes I \\ T^0 \otimes I \\ \end{array} \right) ,\tilde{\mathcal{V}} = \left( {\begin{array}{*{20}c} { T^0 \otimes I} &{}\quad \\ &{}\quad { T^0 \otimes I} \\ \end{array}} \right) ,\tilde{\mathcal{V}}_0 = \left( {\begin{array}{*{20}c} { T^0 \otimes I} &{}\quad O \\ \end{array}} \right) \\ {\mathcal {F}}_0 & = {} \alpha e \otimes I, {\mathcal {F}} = \left( \begin{array}{l} \alpha e \otimes I \\ \alpha e \otimes I \\ \end{array} \right) , {\mathcal {G}}_0 = D_0^{(R)} \oplus D^{(A)} ,{\mathcal {G}}'_0 = \gamma \otimes D_1^{(R)} \otimes I,\\ {\mathcal {H}}_i & = {} i\beta I,\text { for } S - s + 1 \le i \le S - 1,{\mathcal {H}}_{S-s} = \left( {\begin{array}{*{20}c} O &{} {(S-s)\beta I} \\ \end{array}} \right) , \\ {\mathcal {H}}_i & = {} \left( {\begin{array}{*{20}c} {i\beta I} &{}\quad {} \\ {} &{}\quad {i\beta I} \\ \end{array}} \right) ,\text { for }1 \le i \le S - s - 1, {\mathcal {G}}^* = I \otimes D_1^{(R)} \otimes I,{\mathcal {G}}^{**} = \left( \begin{array}{l} O \\ I \otimes D_1^{(R)} \otimes I \\ \end{array} \right) , \\ {\mathcal {G}}_i & = {} T \oplus D_0^{(R)} \oplus D_0^{(A)} - (\alpha + (S - i)\beta )I, \text { for }1 \le i \le s, \\ {\mathcal {G}}_i & = {} \left( {\begin{array}{*{20}c} {{\mathcal {G}}_i^0 } &{}\quad {} \\ {} &{}\quad {{\mathcal {G}}_i^1 } \\ \end{array}} \right) , \text { for }s + 1 \le i \le S \\ {\mathcal {G}}_i^0 & = {} T \oplus D_{}^{(R)} \oplus D_0^{(A)} - (\alpha + (S - i)\beta )I, \\ {\mathcal {G}}_i^1 & = {} T \oplus D_0^{(R)} \oplus D_0^{(A)} - (\alpha + (S - i)\beta )I, \\ {\mathcal {G}}_{S^*} & = {} T \oplus D^{(R)} \oplus D_0^{(A)},\\ \tilde{\mathcal{G}}_i & = {} D_0^{(R)} \oplus D_0^{(A)} - (\alpha + (S - i)\beta )I, \text { for }1 \le i \le s, \\ \tilde{\mathcal{G}}_i & = {} \left( {\begin{array}{*{20}c} {\tilde{\mathcal{G}}_i^0 } &{} {} \\ {} &{} {\tilde{\mathcal{G}}_i^1 } \\ \end{array}} \right) , \text { for }s + 1 \le i \le S \\ \tilde{\mathcal{G}}_i^0 & = {} D_{}^{(R)} \oplus D_0^{(A)} - (\alpha + (S - i)\beta )I, \\ \tilde{\mathcal{G}}_i^1 & = {} D_0^{(R)} \oplus D_0^{(A)} - (\alpha + (S - i)\beta )I, \\ \tilde{\mathcal{G}}_{S^*} & = {} D^{(R)} \oplus D_0^{(A)},\\ L & = {} \left( {\begin{array}{*{20}c} {\gamma \otimes I \otimes D_1^{(A)} } &{}\quad {} \\ {} &{}\quad {\gamma \otimes I \otimes D_1^{(A)} } \\ \end{array}} \right) . \end{aligned}$$

Appendix 3

$$\begin{aligned} A_0 & = {} \left( {\begin{array}{*{20}c} O &{}\quad {} &{}\quad {} &{}\quad {} \\ {} &{}\quad {\lambda I } &{}\quad {} &{}\quad {} \\ {} &{}\quad {} &{}\quad \ddots &{}\quad {} \\ {} &{}\quad {} &{}\quad {} &{}\quad {\lambda I } \\ \end{array}} \right) , A_2 = \left( {\begin{array}{*{20}c} O &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} {} \\ {\mu I} &{}\quad {O} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} \\ {} &{}\quad {} \ddots &{}\quad {\ddots } &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} {} \\ {} &{}\quad {} {} &{}\quad {\mu I} &{}\quad {O} &{}\quad {} &{}\quad {} &{}\quad {} {} \\ {} &{}\quad {} &{}\quad {} {} &{}\quad U &{}\quad {O} &{}\quad {} &{}\quad {} &{}\quad {} {} \\ {} &{}\quad {} &{}\quad {} {} &{}\quad {} &{}\quad V &{}\quad {O} &{}\quad {} {} {} \\ {} &{}\quad {} &{}\quad {} {} &{}\quad {} &{}\quad {} &{}\quad \ddots &{}\quad {\ddots } {} {} \\ {} &{}\quad {} &{}\quad {} {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad V &{}\quad {O} &{}\quad {} \\ {} &{}\quad {} &{}\quad {} {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad V_0 &{}\quad {O} &{}\quad {O} \\ \end{array}} \right) ,\\ A_1 & = {} \left( {\begin{array}{*{20}c} {D_0^{(R)} } &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {D_1^{(R)} } \\ {\alpha I } &{}\quad {G_1 } &{}\quad {H_{S - 1} } &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {D_1^{(R)} } \\ \vdots &{}\quad {} &{}\quad \ddots &{}\quad \ddots &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad \vdots \\ {\alpha I } &{}\quad {} &{}\quad {} &{}\quad {G_s } &{}\quad {H_{S - s} } &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {D_1^{(R)} } \\ {F } &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {G_{s + 1} } &{}\quad {H_{S - (s + 1)} } &{}\quad {} &{}\quad {} &{}\quad {G^{*} } \\ \vdots &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad \ddots &{}\quad \ddots &{}\quad {} &{}\quad \vdots \\ {F} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {G_{S - 1} } &{}\quad {H_1 } &{}\quad {G^{*} } \\ {F} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {G_S } &{}\quad {G^{*} } \\ {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {G_{S^* } } \\ \end{array}} \right) , \\ A_{00} & = {} \left( {\begin{array}{*{20}c} {D_0^{(R)} } &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {D_1^{(R)} } \\ {\alpha I } &{}\quad {\tilde{G}_1 } &{}\quad {H_{S - 1} } &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {D_1^{(R)} } \\ \vdots &{}\quad {} &{}\quad \ddots &{}\quad \ddots &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad \vdots \\ {\alpha I } &{}\quad {} &{}\quad {} &{}\quad {\tilde{G}_s } &{}\quad {H_{S - s} } &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {D_1^{(R)} } \\ {F } &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {\tilde{G}_{s + 1} } &{}\quad {H_{S - (s + 1)} } &{}\quad {} &{}\quad {} &{}\quad {G^{*} } \\ \vdots &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad \ddots &{}\quad \ddots &{}\quad {} &{}\quad \vdots \\ {F} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {\tilde{G}_{S - 1} } &{}\quad {H_1 } &{}\quad {G^{*} } \\ {F} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {\tilde{G}_S } &{}\quad {G^{*} } \\ {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {} &{}\quad {\tilde{G}_{S^* } } \\ \end{array}} \right) \end{aligned}$$

(sub-matrices are given “Appendix 4”).

Appendix 4

$$\begin{aligned} U & = {} \left( \begin{array}{l} \mu I \\ \mu I \\ \end{array} \right) ,V = \left( {\begin{array}{*{20}c} {\mu I} &{} \\ &{} {\mu I} \\ \end{array}} \right) ,V_0 = \left( {\begin{array}{*{20}c} {\mu I} &{} O \\ \end{array}} \right) ,\\ F & = {} \left( \begin{array}{l} \alpha I \\ \alpha I \\ \end{array} \right) , H_i = i\beta I,\text { for } S - s + 1 \le i \le S - 1, H_{S-s} = \left( {\begin{array}{*{20}c} O &{} {(S-s)\beta I} \\ \end{array}} \right) , \\ H_i & = {} \left( {\begin{array}{*{20}c} {i\beta I} &{}\quad {} \\ {} &{}\quad {i\beta I} \\ \end{array}} \right) ,\text { for }1 \le i \le S - s - 1,\\ G^{*} & = {} \left( \begin{array}{l} O \\ D_1^{(R)} \\ \end{array} \right) , G_i = D_0^{(R)} - (\lambda +\mu +\alpha + (S - i)\beta )I, \text { for }1 \le i \le s, \\ G_i & = {} \left( {\begin{array}{*{20}c} {G_i^0 } &{}\quad {} \\ {} &{}\quad {G_i^1 } \\ \end{array}} \right) , \text { for } s + 1 \le i \le S, G_i^0 = D^{(R)} - (\lambda +\mu +\alpha + (S - i)\beta )I,\\ G_i^1 & = {} D_0^{(R)} - (\lambda +\mu +\alpha + (S - i)\beta )I, G_{S^*} = D^{(R)} - (\lambda +\mu ) I,\\ \tilde{G}_i & = {} D_0^{(R)} - (\lambda +\alpha + (S - i)\beta )I, \text { for }1 \le i \le s, \\ \tilde{G}_i & = {} \left( {\begin{array}{*{20}c} {\tilde{G}_i^0 } &{} {} \\ {} &{} {\tilde{G}_i^1 } \\ \end{array}} \right) , \text { for } s + 1 \le i \le S, \tilde{G}_i^0 = D^{(R)} - (\lambda +\alpha + (S - i)\beta )I, \\ \tilde{G}_i^1 & = {} D_0^{(R)} - (\lambda +\alpha + (S - i)\beta )I, \tilde{G}_{S^*} = D^{(R)} - \lambda I. \end{aligned}$$

Each matrix \(A_{00}, A_0, A_1, A_2\) is a square matrix of order \(m(2S-s+2)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shajin, D., Krishnamoorthy, A. & Manikandan, R. On a queueing-inventory system with common life time and Markovian lead time process. Oper Res Int J 22, 651–684 (2022). https://doi.org/10.1007/s12351-020-00560-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12351-020-00560-y

Keywords

Navigation