Skip to main content

Optimal portfolio liquidation with cross-price impacts on trading

  • Original paper
  • Published:
Operational Research Aims and scope Submit manuscript

Abstract

Consider the portfolio liquidation problem in which a risk-neutral investor unwinds a large portfolio because of urgent liquidity issues. To measure market liquidity, both permanent and temporary cross-price impacts on trading are taken into consideration. First of all, we formulate this problem as a non-convex optimization problem with some constraints. Then we characterize the structural properties of the optimal liquidation strategies. We find that the investor prefers to sell more liquid assets which have lower permanent and temporary price impacts. In addition, we show that the investor likes to sell more of the assets that have a higher initial price. Finally, we develop a genetic algorithm to obtain the optimal solution for the above problem, and we also illustrate the efficiency of the algorithm. Policy implications of this paper are about how to liquidate a large portfolio in response to difficult economic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adrian T, Shin HS (2008) Financial intermediary leverage and value-at-risk. Technical report, Staff Report No. 338, Federal Reserve Bank of New York

  • Alfonsi A, Klöck F, Schied A (2016) Multivariate transient price impact and matrix-valued positive definite functions. Math Oper Res 41(3):914–934

    Article  Google Scholar 

  • Almgren R, Chriss N (2001) Optimal execution of portfolio transactions. J Risk 3(2):5–40

    Article  Google Scholar 

  • Andrade SC, Chang C, Seasholes MS (2008) Trading imbalances, predictable reversals, and cross-stock price pressure. J Financ Econ 88(2):406–423

    Article  Google Scholar 

  • Barth JR, McCarthy D (2012) Trading losses: a little perspective on a large problem. Available at SSRN 2169660

  • Bernhardt D, Taub B (2008) Cross-asset speculation in stock markets. J Financ 63(5):2385–2427

    Article  Google Scholar 

  • Bertsimas D, Lo AW (1998) Optimal control of execution costs. J Financ Markets 1(1):1–50

    Article  Google Scholar 

  • Brown DB, Carlin BI, Lobo MS (2010) Optimal portfolio liquidation with distress risk. Manag Sci 56(11):1997–2014

    Article  Google Scholar 

  • Brunnermeier MK (2009) Deciphering the liquidity and credit crunch 2007–2008. J Econ Perspect 23(1):77–100

    Article  Google Scholar 

  • Caccioli F, Still S, Marsili M, Kondor I (2013) Optimal liquidation strategies regularize portfolio selection. Eur J Financ 19(6):554–571

    Article  Google Scholar 

  • Carlin BI, Lobo MS, Viswanathan S (2007) Episodic liquidity crises: cooperative and predatory trading. J Financ 62(5):2235–2274

    Article  Google Scholar 

  • Cartea Á, Gan L, Jaimungal S (2019) Trading co-integrated assets with price impact. Math Financ 29(2):542–567

    Article  Google Scholar 

  • Changdar C, Pal RK, Mahapatra GS, Khan A (2018) A genetic algorithm based approach to solve multi-resource multi-objective knapsack problem for vegetable wholesalers in fuzzy environment. Oper Res 1–32

  • Chen J, Feng L, Peng J, Ye Y (2014) Analytical results and efficient algorithm for optimal portfolio deleveraging with market impact. Oper Res 62(1):195–206

    Article  Google Scholar 

  • Gen M, Cheng R (2000) Genetic algorithms and engineering optimization, vol 7. Wiley, Hoboken

    Google Scholar 

  • Golberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addion Wesley 1989

  • Haupt RL, Haupt SE (2004) Practical genetic algorithms. Wiley, Hoboken

    Google Scholar 

  • Holthausen RW, Leftwich RW, Mayers D (1990) Large-block transactions, the speed of response, and temporary and permanent stock-price effects. J Financ Econ 26(1):71–95

    Article  Google Scholar 

  • Horst U, Xia X (2019) Multi-dimensional optimal trade execution under stochastic resilience. Financ Stoch 23(4):889–923

    Article  Google Scholar 

  • Huberman G, Stanzl W (2005) Optimal liquidity trading. Rev Financ 9(2):165–200

    Article  Google Scholar 

  • Jorion P (2000) Risk management lessons from long-term capital management. Eur Financ Manag 6(3):277–300

    Article  Google Scholar 

  • Kirk DE (2012) Optimal Control Theory: An Introduction (Courier Corporation)

  • Kodres LE, Pritsker M (2002) A rational expectations model of financial contagion. J Financ 57(2):769–799

    Article  Google Scholar 

  • Madhavan A (2000) Market microstructure: a survey. J Financ Markets 3(3):205–258

    Article  Google Scholar 

  • Oehmke M (2014) Liquidating illiquid collateral. J Econ Theory 149:183–210

    Article  Google Scholar 

  • Pasquariello P, Vega C (2013) Strategic cross-trading in the US stock market. Rev Financ 19(1):229–282

    Article  Google Scholar 

  • Popov A (2005) Genetic algorithms for optimization. User Manual, Hamburg, p 2013

    Google Scholar 

  • Sadka R (2006) Momentum and post-earnings-announcement drift anomalies: the role of liquidity risk. J Financ Econ 80(2):309–349

    Article  Google Scholar 

  • Schied A, Schöneborn T (2009) Risk aversion and the dynamics of optimal liquidation strategies in illiquid markets. Financ Stoch 13(2):181–204

    Article  Google Scholar 

  • Schneider M, Lillo F (2019) Cross-impact and no-dynamic-arbitrage. Quant Financ 19(1):137–154

    Article  Google Scholar 

  • Scholes MS (2000) Crisis and risk management. Am Econ Rev 90(2):17–21

    Article  Google Scholar 

  • Schöneborn T (2016) Adaptive basket liquidation. Financ Stoch 20(2):455–493

    Article  Google Scholar 

  • Sias RW, Starks LT, Titman S (2001) The price impact of institutional trading. Available at SSRN 283779

  • Srinivas C, Reddy BR, Ramji K, Naveen R (2014) Sensitivity analysis to determine the parameters of genetic algorithm for machine layout. Procedia Mater Sci 6:866–876

    Article  Google Scholar 

  • Tawarmalani M, Sahinidis NV (2005) A polyhedral branch-and-cut approach to global optimization. Math Program 103(2):225–249

    Article  Google Scholar 

  • Tsoukalas G, Wang J, Giesecke K (2017) Dynamic portfolio execution. Manag Sci 65(5):2015–2040

    Google Scholar 

  • Xanthos G, Tserkezos D (2007) Temporal aggregation effects on the construction of portfolios of stocks or mutual funds through optimization techniques: some empirical and Monte Carlo results. Oper Res 7(1):61–82

    Google Scholar 

  • Zhou J, Li X, Pedrycz W (2016) Mean-semi-entropy models of fuzzy portfolio selection. IEEE Trans Fuzzy Syst 24(6):1627–1636

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kin Keung Lai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix. Proofs

Proof of Proposition 1

Suppose that the result is reverse, i.e., \(-x_{0,i}= -x_{0,j}\le y_{j}^{*}<y_{i}^{*}\le 0\). Let \(\varvec{\Theta }=(\theta _{1},\ldots ,\theta _{n})\) be a direction vector with \(\theta _{i}=-1,\theta _{j}=1\) and \(\theta _{k}=0\) for \(k\ne i,j\). From the formulations of \(l_{1}(\mathbf {y})\) and \(e_{1}(\mathbf {y})\), we can obtain that

$$\begin{aligned} \nabla l_{1}(\mathbf {y})=\mathbf {P}_{0}+(2\varvec{\Lambda }+\varvec{\Gamma })\mathbf {y},\quad \nabla e_{1}(\mathbf {y})=\varvec{\Gamma }\mathbf {x}_{0}-(2\varvec{\Lambda }-\varvec{\Gamma })\mathbf {y}, \end{aligned}$$
where the ith component of \(\nabla l_{1}(\mathbf {y})\) is
$$\begin{aligned} P_{0,i}+\sum _{k=1}^{n}(2\lambda _{i,k}+\gamma _{i,k})y_{k}, \end{aligned}$$
and the ith component of \(\nabla e_{1}(\mathbf {y})\) is
$$\begin{aligned} \sum _{k=1}^{n} \big [\gamma _{i,k}(y_{k}+x_{0,k})-2\lambda _{i,k}y_{k} \big ]. \end{aligned}$$
Note that \(P_{0,i}=P_{0,j}\), then we have
$$\begin{aligned} \varvec{\Theta }'\nabla l_{1}(\mathbf {y}^{*})=&\sum _{k=1}^{n} \big [(\gamma _{j,k}-\gamma _{i,k})+2(\lambda _{j,k}-\lambda _{i,k}) \big ]y_{k}^{*}\\ \le&\big [(\gamma _{j,i}-\gamma _{i,i})y_{i}^{*}+(\gamma _{j,j} -\gamma _{i,j})y_{j}^{*} \big ]+2 \big [(\lambda _{j,i} -\lambda _{i,i})y_{i}^{*}+(\lambda _{j,j}-\lambda _{i,j})y_{j}^{*} \big ]\\ =&\big [\gamma _{j,j}y_{j}^{*}-\gamma _{i,i}y_{i}^{*} +\gamma _{i,j}(y_{i}^{*}-y_{j}^{*}) \big ]+2 \big [\lambda _{j,j}y_{j}^{*}-\lambda _{i,i}y_{i}^{*} +\lambda _{i,j}(y_{i}^{*}-y_{j}^{*}) \big ]\\<&\big [(\gamma _{i,i}-\gamma _{i,j})+2(\lambda _{i,i}-\lambda _{i,j}) \big ](y_{j}^{*}-y_{i}^{*})<0. \end{aligned}$$
The first inequality is due to Condition (b), the second inequality is due to Condition (a) and the third inequality is due to Assumption 1.

In the following, we show \(\varvec{\Theta }'\nabla e_{1}(\mathbf {y}^{*})>0\). We note that

$$\begin{aligned} \varvec{\Theta }'\nabla e_{1}(\mathbf {y}^{*})=&\sum _{k=1}^{n}(\gamma _{j,k} -\gamma _{i,k})(y_{k}^{*}+x_{0,k})+2\sum _{k=1}^{n}(\lambda _{i,k}-\lambda _{j,k})y_{k}^{*}\\ \ge&\big [(\gamma _{j,i}-\gamma _{i,i})(y_{i}^{*}+x_{0,i})+(\gamma _{j,j} -\gamma _{i,j})(y_{j}^{*}+x_{0,j}) \big ]\\&+2 \big [(\lambda _{i,i} -\lambda _{j,i})y_{i}^{*}+(\lambda _{i,j}-\lambda _{j,j})y_{j}^{*} \big ]\\ =&(\gamma _{j,j}-\gamma _{i,i})x_{0,i}+ \big [2(\lambda _{i,i}-\lambda _{i,j})-(\gamma _{i,i}-\gamma _{i,j}) \big ]y_{i}^{*}\\&- \big [2(\lambda _{j,j}-\lambda _{i,j})-(\gamma _{j,j}-\gamma _{i,j}) \big ]y_{j}^{*}. \end{aligned}$$
The first inequality is due to Condition (b). We shall consider the following three cases to complete the proof.

\(Case\ 1\). If \(2(\lambda _{i,i}-\lambda _{i,j})-(\gamma _{i,i}-\gamma _{i,j})>0\), it follows that

$$\begin{aligned} \varvec{\Theta }' \nabla e_{1}(\mathbf {y}^{*})\ge&(\gamma _{j,j}-\gamma _{i,i})x_{0,i} + \big [2(\lambda _{i,i}-\lambda _{i,j})-(\gamma _{i,i}-\gamma _{i,j}) \big ]y_{i}^{*}\\&- \big [2(\lambda _{j,j}-\lambda _{i,j})-(\gamma _{j,j}-\gamma _{i,j}) \big ]y_{j}^{*}\\ \ge&(\gamma _{j,j}-\gamma _{i,i})x_{0,j}+ \big [2(\lambda _{i,i}-\lambda _{i,j}) -(\gamma _{i,i}-\gamma _{i,j}) \big ]y_{j}^{*}\\&- \big [2(\lambda _{j,j}-\lambda _{i,j}) -(\gamma _{j,j}-\gamma _{i,j}) \big ]y_{j}^{*}\\ =&(\gamma _{j,j}-\gamma _{i,i})(x_{0,j}+y_{j}^{*})+2(\lambda _{i,i}-\lambda _{j,j})y_{j}^{*}>0. \end{aligned}$$
\(Case\ 2\). If \(2(\lambda _{i,i}-\lambda _{i,j})-(\gamma _{i,i}-\gamma _{i,j})\le 0\) and \(2(\lambda _{j,j}-\lambda _{i,j})-(\gamma _{j,j}-\gamma _{i,j})>0\), then we have
$$\begin{aligned} \varvec{\Theta }'\nabla e_{1}(\mathbf {y}^{*})> - \big [2(\lambda _{j,j}-\lambda _{i,j})-(\gamma _{j,j}-\gamma _{i,j}) \big ]y_{j}^{*}>0. \end{aligned}$$
\(Case\ 3\). If \(2(\lambda _{i,i}-\lambda _{i,j})-(\gamma _{i,i}-\gamma _{i,j})\le 0\) and \(2(\lambda _{j,j}-\lambda _{i,j})-(\gamma _{j,j}-\gamma _{i,j})\le 0\), then we have
$$\begin{aligned} \varvec{\Theta }' \nabla e_{1}(\mathbf {y}^{*})\ge&(\gamma _{j,j}-\gamma _{i,i})x_{0,i}\\&+ \big [2(\lambda _{i,i}-\lambda _{i,j})-(\gamma _{i,i}-\gamma _{i,j}) \big ]y_{i}^{*} + \big [2(\lambda _{j,j}-\lambda _{i,j})-(\gamma _{j,j}-\gamma _{i,j}) \big ]x_{0,i}\\ =\,&\big [2(\lambda _{j,j}-\lambda _{i,j})-(\gamma _{i,i}-\gamma _{i,j}) \big ]x_{0,i} +\, \big [2(\lambda _{i,i}-\lambda _{i,j})-(\gamma _{i,i}-\gamma _{i,j}) \big ]y_{i}^{*}\\ \ge&\big [2(\lambda _{j,j}-\lambda _{i,j})-(\gamma _{i,i}-\gamma _{i,j}) \big ]x_{0,i}>0, \end{aligned}$$
where the last inequality is due to Condition (c).

Based on the above analyses, there must exist a small constant \(\delta >0\) such that \(-\mathbf {x}_{0}\le \mathbf {y}^{*}+\delta \varvec{\Theta }\le 0\). The new feasible solution \(\mathbf {y}^{*}+\delta \varvec{\Theta }\) results in strictly more equity and less liabilities after trading. Consequently, \(\mathbf {y}^{*}+\delta \varvec{\Theta }\) is strictly better than \(\mathbf {y}^{*}\), which contradicts the optimality of \(\mathbf {y}^{*}\). \(\square\)

Proof of Proposition 2

Suppose that \(y_{i}^{*}>y_{j}^{*}\). Again, let \(\varvec{\Theta }=(\theta _{1},\ldots ,\theta _{n})\) be a direction vector with \(\theta _{i}=-1,\theta _{j}=1\) and \(\theta _{k}=0\) for \(k\ne i,j\), it follows that

$$\begin{aligned} \varvec{\Theta }' \nabla l_{1}(\mathbf {y}^{*})=\,&P_{0,j}-P_{0,i}+\sum _{k=1}^{n}(2\lambda _{j,k}+\gamma _{j,k})y_{k}^{*}\\ -&\sum _{k=1}^{n}(2\lambda _{i,k}+\gamma _{i,k})y_{k}^{*}=P_{0,j}-P_{0,i}<0, \end{aligned}$$
and
$$\begin{aligned} \varvec{\Theta }' \nabla e_{1}(\mathbf {y}^{*})= \sum _{k=1}^{n} \big [\gamma _{j,k}(y_{k}^{*}+x_{0,k})-2\lambda _{j,k}y_{k}^{*} \big ]-\sum _{k=1}^{n} \big [\gamma _{i,k}(y_{k}^{*}+x_{0,k})-2\lambda _{i,k}y_{k}^{*} \big ]=0. \qquad \ \end{aligned}$$
Note that there must exist a constant \(\varepsilon >0\) which is small enough such that \(-\mathbf {x}_{0}\le \mathbf {y}^{*}+\varepsilon \varvec{\Theta }\le 0\). The feasible solution \(\mathbf {y}^{*}+\varepsilon \varvec{\Theta }\) results in strictly less liabilities and keeps the expected equity unchanged after trading. This contradicts the optimality and uniqueness of \(\mathbf {y}^{*}\). \(\square\)

Proof of Lemma 1

If \(g_{0}(\mathbf {y}^{*})\ne 0\) for the optimal solution \(\mathbf {y}^{*}\), then it leads to \(0\notin I^{*}\). Since \(g_{i}(\mathbf {y}^{*})\) and \(g_{n+i}(\mathbf {y}^{*})\) cannot be simultaneously equal to 0, the indicators i and \(n+i\) cannot be simultaneously in the set \(I^{*}\). As a result, \(\nabla g_{i}(\mathbf {y}^{*})\), \(i\in I^{*}\), are linearly independent. \(\square\)

Proof of Proposition 3

Note that the objective function of Problem (5) is continuous with a closed and bounded feasible domain, there must exist an optimal solution \(\mathbf {y}^{*}\). Suppose that the result is not established, i.e., \(g_{0}(\mathbf {y}^{*})\ne 0\). By Lemma 1, it follows that \(\nabla g_{i}(\mathbf {y}^{*})\) \((i\in I^{*})\) are linearly independent. Based on the first-order optimization conditions, there is a vector \(\varvec{\mu }^{*}=(\mu _{0}^{*},\mu _{1}^{*},\ldots ,\mu _{n}^{*},\mu _{n+1}^{*},\ldots ,\mu _{2n}^{*})\ge 0\) that satisfies the following conditions:

$$\begin{aligned} \mu _{0}^{*}g_{0}(\mathbf {y}^{*})= 0, \end{aligned}$$
(EC.1)
$$\begin{aligned} \mu _{i}^{*}y_{i}^{*}= 0,\ (i=1,2,\ldots ,n) \end{aligned}$$
(EC.2)
$$\begin{aligned} \mu _{n+i}^{*}(y_{i}^{*}+x_{0,i})= 0,\ (i=1,2,\ldots ,n) \end{aligned}$$
(EC.3)
$$\begin{aligned} -\nabla e_{1}(\mathbf {y}^{*})+\mu _{0}^{*}\nabla g_{0}(\mathbf {y}^{*})+\sum _{i=1}^{n}\big [\mu _{i}^{*}\nabla g_{i}(\mathbf {y}^{*})+\mu _{n+i}^{*}\nabla g_{n+i}(\mathbf {y}^{*}) \big ]= 0. \end{aligned}$$
(EC.4)
Since \(g_{0}(\mathbf {y}^{*})\ne 0\), it follows that \(\mu _{0}^{*}=0\) from Eq. (EC.1). For any integer i (\(i=1,2,\ldots ,n\)), Eq. (EC.4) can be divided into
$$\begin{aligned} \sum _{k=1}^{n}(2\lambda _{i,k}-\gamma _{i,k})y_{k}^{*}-\sum _{k=1}^{n} \gamma _{i,k}x_{0,k}+\mu _{i}^{*}-\mu _{n+i}^{*}=0. \end{aligned}$$
(EC.5)
From Eqs. (EC.2) and (EC.3), it is clear that \(\mu _{i}^{*}\) and \(\mu _{n+i}^{*}\) cannot be positive simultaneously. To complete the proof, we will consider three cases in what follows.

\(Case\ 1\). If \(\mu _{i}^{*}=\mu _{n+i}^{*}=0\), then Eq. (EC.5) can be simplified into

$$\begin{aligned} \sum _{k=1}^{n}(2\lambda _{i,k}-\gamma _{i,k})y_{k}^{*}=\sum _{k=1}^{n}\gamma _{i,k}x_{0,k}. \end{aligned}$$
Since \(2\lambda _{i,k}\ge \gamma _{i,k}\) and \(y^{*}_{k}\le 0\), it follows that \(\sum _{k=1}^{n}(2\lambda _{i,k}-\gamma _{i,k})y_{k}^{*}\le 0\). This contradicts the fact that \(\sum _{k=1}^{n}\gamma _{i,k}x_{0,k}>0\).

\(Case\ 2\). If \(\mu _{i}^{*}=0\) and \(\mu _{n+i}^{*}\ne 0\), then it leads to

$$\begin{aligned} \mu _{n+i}^{*}=\sum _{k=1}^{n}(2\lambda _{i,k}-\gamma _{i,k})y_{k}^{*} -\sum _{k=1}^{n}\gamma _{i,k}x_{0,k}< \sum _{k=1}^{n}(2\lambda _{i,k}-\gamma _{i,k})y_{k}^{*}\le 0, \end{aligned}$$
which is contradictory to the fact that \(\mu _{n+i}^{*}>0\).

\(Case\ 3\). If \(\mu _{n+i}^{*}=0\) and \(\mu _{i}^{*}\ne 0\), then it follows that \(y_{i}^{*}=0\) from Eq. (EC.2). In this case, one can verify that \(\mathbf {y}^{*}=0\) due to the arbitrariness of integer i. However, when the optimal solution is \(\mathbf {y}^{*}=0\), the constraint condition \(g_{0}(\mathbf {y}^{*})\le 0\) can be reduced to \(l_{0}-\rho e_{0}\le 0\). This is contradictory to Assumption 2. \(\square\)

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 17 kb)

Supplementary material 2 (XLSX 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Guo, J., Lai, K.K. et al. Optimal portfolio liquidation with cross-price impacts on trading. Oper Res Int J 22, 1083–1102 (2022). https://doi.org/10.1007/s12351-020-00572-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12351-020-00572-8

Keywords