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Abstract
Conventional data envelopment analysis (DEA) models are often extended for con-
stant or variable returns to scale assumptions based on the under-investigated tech-
nology. It is assumed that all inputs and outputs are real-valued data. However, in 
many practical applications, proportionality or convexity axioms require to be modi-
fied. This study attempts to further expand upon the hybrid returns to scale DEA 
models in the presence of integer-valued input and output data. We refine the pre-
vious axioms to introduce a new minimal extrapolation technology set. Moreover, 
we formulate a couple of mixed-integer linear programming models for efficiency 
evaluation and target setting. An empirical application on 30 high schools in Iran is 
provided to validate the proposed approach. The data analysis, including efficiency 
evaluations along with providing benchmark units, is also performed.
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1  Introduction

Data envelopment analysis (DEA) is a non-parametric mathematical programming 
technique originally introduced by Charnes et al. (1979) and extended by Banker et al. 
(1984). This data-oriented technique is utilized for performance assessment of a set of 
homogeneous decision making units (DMUs) which consume multiple inputs to pro-
duce multiple outputs. Conventional DEA models are often built on some basic infor-
mation about returns to scale assumptions such as constant or variable return to scale 
for the underlying production set (Cooper et al. 2006).

It is realized that input and output data in real applications of performance evalua-
tion of production systems are sometimes integer-valued. In this sense, to conduct in-
depth performance analysis, it is important to modify the traditional DEA models to 
take into discrete types of input/output data. Neglecting the integrality assumption of 
inputs and/or outputs may lead to the overestimation of results in the efficiency evalua-
tion of production units. At the first sight, it seems that rounding to the nearest integer 
target is a rational procedure to get an optimal target. However, this method may lead to 
inefficient or even infeasible target points and misleading efficiency evaluations. Han-
dling integer data in a modified DEA model was first studied in the DEA framework by 
Lozano and Villa (2006) and then extended and improved by Kuosmanen and Kazemi 
Matin (2009), Kazemi Matin and Kuosmanen (2009) , Kuosmanen et al. (2015).

As Podinovski (2004) discussed, in many real DEA applications, the full propor-
tionality between all inputs and outputs also cannot be assumed. This means that it is 
possible to have a subset of inputs that are not proportional to a subset of outputs in the 
evaluation.

These issues show that there is a need to modify the existing approaches in such a 
way that they can be applied for the cases that selective proportionality and discrete 
data coexist. This work extends the hybrid returns to scale (HRS) models in DEA for 
the case of integer-valued input and output data by taking an axiomatic approach. An 
associated minimal extrapolation technology set is then introduced as well as some 
mixed integer linear programming (MILP) models that are suggested for efficiency 
evaluation in the resulting technology. To demonstrate the applicability and capability 
of the new approach, two examples are provided.

This paper is organized as follows: A literature review on integer DEA and HRS 
models is given in Sect. 2. Section 3 briefly presents the concept of selective propor-
tionality in DEA frameworks. The HRS technology is extended in Sect. 4 and a new 
Farrell-type efficiency measure is presented for the treatment of integer-valued input 
and output. Section 5 discusses a descriptive application of performance evaluation of 
30 high schools in Iran. The paper concludes in Sect. 6.

2 � Literature review

Different assumptions about DEA axioms and various types of data have been 
widely studied in DEA literature for better analyzing the performance of produc-
tion units. The first two basic DEA models, i.e., CCR (Charnes et al. 1978) and 



3437

1 3

Selective proportionality and integer‑valued data in DEA:…

BCC (Banker et al. 1984) models, have been developed based on constant returns 
to scale (CRS) and variable returns to scale (VRS) technologies, respectively. 
Thenceforth, a wide range of DEA models has been introduced to deal with the 
performance evaluation problem with different assumptions. These models pos-
sess their advantages and limitations. Podinovski (2004) highlighted that the VRS 
technology is conservative and may overestimate the true efficiency scores in 
many cases. On the other hand, the underlying full proportionality assumption in 
CRS technology does not hold in all cases. Consequently, the author introduced 
a novel hybrid returns to scale (HRS) technology to make a bridge between con-
stant and variable returns to scale technologies. This type of hybrid scenario is 
also used in other studies in DEA literature; for example, in efficiency measure-
ment with mixed orientation in Wu and O’Brien (2010), where a mixed radial 
DEA model is suggested and then it is verified that the obtained results lie within 
solutions of input and output orientations.

In the HRS models, it is possible to build the technology set based on a selec-
tive proportionality axiom. This can be done by a modification on full proportion-
ality axiom in the CRS technology. The HRS production technology is a convex 
polyhedral set where a subset of inputs and outputs operates under the CRS assump-
tion while other inputs and outputs activate under the VRS assumption. The most 
important feature of HRS technology is that it simultaneously covers both quantity 
and quality of data in a unified production set which often appears in technologies 
with different types of returns to scale (RTS) assumptions. Several extensions and 
applications of HRS technologies have been reported in the recent DEA literature. 
Podinovski (2009) developed a production possibility set that exhibits both full and 
selective proportionality in a unified set. Cook and Zhu (2011) introduced a new 
multiple variable proportionality (MVP) concept as an extension of HRS technol-
ogy. The MVP shows how output bundles are separated into distinct subsets with 
different types of RTS. Kazemi Matin and Emrouznejad (2011) utilized a variant of 
the HRS assumption and developed a bounded technology set by taking into account 
integer-valued data. Alirezaee and Boloori (2012) proposed a proportional model 
of trade-offs in the DEA framework by modifying the proportionality axiom and 
by considering some input–output replacement. Huang et  al. (2012) considered a 
hybrid DEA model and evaluated proportionate and non-proportionate inputs with 
radial and non-radial measures in an application to Taiwanese international tourist 
hotels. The authors utilized the HRS to evaluate the impact of marketing expenses 
on subjects. Podinovski et al. (2014) reported another application of HRS for perfor-
mance assessment of secondary schools. Recently, Afsharian et al. (2015) proposed 
a modification of free disposal hull (FDH) technology by incorporating the selec-
tive proportionality axiom. The HRS model incorporating production trade-offs was 
developed by Podinovski et al. (2017) with an application to the efficiency assess-
ment of public universities in Malaysia.

More recently, Ferreira et al. (2018) and Ferreira and Marques (2020) proposed 
an extension of the traditional order-α method to estimate an empirical convex 
α-level. They proposed a step forward on the order-α robust nonparametric method 
for technical efficiency assessment. As Ferreira and Marques (2020) stated, the 
order-α robust nonparametric method is computationally complex and expensive. In 
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other words, in the DEA framework with at most 500 DMUs, we prefer to solve a 
MILP model instead of the order-α method.

To the best of our knowledge, no research has directly considered integer-valued 
data in HRS models. This paper is the first attempt that takes the assumptions of 
the integrality of the data and selective proportionality of inputs and outputs into 
consideration.

3 � Selective proportionality in DEA

It is initially assumed that a set of n decision making unit (DMUs) exists where 
DMUj, (j ∈ {1, ..., n}) . consumes m inputs 

(
xj =

(
xij
)
, i ∈ {1, ...,m}

)
 to produce s 

outputs 
(
yj =

(
yrj
)
, r ∈ {1, ..., s}

)
 . Basic DEA models are built upon a technology 

set that satisfies a set of underlying axioms of disposability and returns to scale 
properties. A common example could be introducing the following basic axioms for 
the CCR production set Tc:

Ȧ1 . Observations inclusion: Forll j : 
(
xj, yj

)
∈ Tc.

Ȧ2 . Convexity: Tc is a convex set.
Ȧ3 . Constant returns to scale: For all (x, y) ∈ Tc and � ∈ R+ : 

(
�xj, �yj

)
∈ Tc.

Ȧ4 . Free disposability: If (x, y) ∈ Tc , x ≤ x and 0s ≤ y ≤ y0
s
ℝ
s0

s
= (0,… ., 0) ∈ ℝ

s , then 
(x, y) ∈ Tc.

Ȧ5 . Closedness: Tc is a closed set.
Ȧ6 . Minimum extrapolation: Tc is the intersection of all sets that satisfy axioms 

Ȧ1 − Ȧ5.
Regarding the axioms Ȧ1 − Ȧ6 , the associated production possibility set (PPS) 

could be stated as follows:

For deriving the VRS technology set, axiom Ȧ3 from the CRS technology is 
ignored and the associated minimal extrapolation technology set is constructed by 
Banker et al. (1984) as follows:

The DEA CRS form of technology assumes full proportionality among all inputs 
and outputs while VRS refers to no proportionality. In most practical situations, 
however, only some of the inputs and the outputs may be assumed to be proportional 
to each other. The remaining variables are not part of the proportion.

Podinovski (2004) addressed similar circumstances and introduced a hybrid 
model that combines CRS and VRS assumptions. In this model, the CRS assump-
tion is considered for selected sets of inputs and outputs while the VRS assumption 
holds for the other data. Podinovski (2004) claimed that the discriminating power 

(1)Tc =

{
(x, y) ∈ Rm+s

+

||||||
x ≥

n∑
j=1

�jxj, y ≤

n∑
j=1

�jyj, �j ≥ 0 ∀j

}

(2)Tv =

{
(x, y) ∈ Rm+s

+

||||||
x ≥

n∑
j=1

�jxj, y ≤

n∑
j=1

�jyj,

n∑
j=1

�j = 1, �j ≥ 0 ∀j

}
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of an HRS model is better than either VRS or CRS formulations in most practical 
situations.

In what follows, we partition the set of inputs and outputs into two groups: those 
inputs and outputs that are proportional to each other and those that are not. We use 
the superscript “P” and “NP” to show proportional and non-proportional input–out-
put variables, respectively. To this end, consider the following partitions according 
to the selective proportionality:

It is noted that OP is assumed to be proportional to IP while INP and ONP are not. 
Subsets “ P ” and “ NP ” of inputs and outputs are non-empty, mutually exclusive and 
collectively exhanustive. Thus, each production plan can be stated as below

where xP ∈ ℝ|IP| , yP ∈ ℝ|OP| , xNP ∈ ℝ
m−|IP| , and yNP ∈ ℝ

s−|OP|.
Podinovski (2004) defined the HRS technology based on the following axioms:
A1. Observations inclusion: For all j : 

(
xj, yj

)
∈ THRS.

A2. Convexity: THRS is a convex set.
A3. Free disposability: If (x, y) ∈ THRS , x ≤ x and 0s ≤ y ≤ y then (x, y) ∈ THRS.
A4. Selective proportionality: Let (x, y) ∈ THRS , then (�x, �y) is defined in expan-

sion and contraction scenarios as follows:

Podinovski (2004) proved that under the convexity assumption the contraction 
scenario can be stated as follows:

A5. Closedness: THRS is a closed set.
A6. Minimum extrapolation: THRS is the minimal set that satisfies axioms 

A1 − A5.
Regarding the axioms A1 − A6 , it is shown that the associated production pos-

sibility set (PPS) can be stated as follows:

I = IP ∪ INP,O = OP ∪ ONP

(x, y) =
(
xP, xNP, yP, yNP

)

(3)
Expansion scenario(
𝛼xP, xNP, 𝛼yP, yNP

)
∈ THRS,∀𝛼(𝛼 > 1)

(4)
Contraction scenario(
𝛼xP, xNP, 𝛼yP, 𝛼yNP

)
∈ THRS,∀𝛼(0 ≤ 𝛼 < 1)

(5)

THRS =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

�
xP, xNP, yP, yNP

�
∈ Rm+s

+

��������������

xP ≥

n∑
j=1

�j

�
�j�jx

P
j

�
, yP ≤

n∑
j=1

�j

�
�j�jy

P
j

�

xNP ≥

n∑
j=1

�jx
NP
j

, yNP ≤

n∑
j=1

�j

�
�jy

NP
j

�
,

N∑
J=1

�j = 1 ,∀j, �j ≥ 0, �j ≤ 1, �j ≥ 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
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In the presentation of the production set THRS in (5), �j ≤ 1 and �j ≥ 1 are respec-
tively expansion and contraction factors.

Different assumptions in DEA axioms have now been considered for constructing a 
variety of technologies for better formulating and analyzing practical production sys-
tems. Podinovski (2009) considered full and selective proportionality simultaneously 
and applied the proposed models to a practical example. As a result, he noted that 
there is a notable difference in the discrimination powers of CRS and HRS models.

Based on the above discussions and in order to produce more reliable results in 
performance assessments of production units, the common DEA models need to 
be modified in order to address applications where selective proportionality in the 
presence of integer-valued input and output data. We employ an axiomatic approach 
aims at addressing the integer-valued data in the HRS models.

4 � Selective proportionality and integer‑valued data

For simplicity of presentation and without loss of generality, it has been assumed 
that all input and output data can only take integer values. This assumption would be 
relaxed later. Consider the following axiom defined in integer environment by Kuos-
manen and Kazemi Matin (2009):

Integrality ∶ If (x, y) ∈ T then (x, y) ∈ Zm+s

Obviously, the integrality assumption is in contradiction with standard DEA 
assumptions such as free disposability and convexity assumptions. This indicates 
that traditional axioms need to be modified to meet new conditions. To do this, they 
introduced the following axioms for contraction and expansion scenarios:

Natural divisibility: If (x, y) ∈ T  and ∃� ∈ [0, 1) such that (�x, �y) ∈ Zm+s , then 
(�x, �y) ∈ T .

Natural augmentability: If (x, y) ∈ T  and ∃𝜆 > 1 such that (�x, �y) ∈ Zm+s , then 
(�x, �y) ∈ T .

These axioms are integer-restricted counterparts of non-increasing and non-
decreasing RTS axioms of conventional DEA models. Based on our earlier discussion 
on selective proportionality, we propose the following set of axioms for taking into 
account both integrality and proportionality relations in a unified technology set, T̂.

B1. Observations inclusion: For all j : 
(
xj, yj

)
∈ T̂ .

B2. Natural convexity: If (x, y),
(
x, y

)
∈ T̂ , � ∈ (0, 1) and �(x, y) + (1 − �)

(
x, y

)
∈ Z

m+s
+

 , 
then 

(
𝜆x + (1 − 𝜆)x, 𝜆y + (1 − 𝜆)y

)
∈ T̂.

B3. Natural disposability: If (x, y) ∈ T̂ , (u, v) ∈ Zm+s and 0s ≤ v ≤ y , then 
(x + u, y − v) ∈ T̂ .

B4. Natural selective proportionality:

a.	 If (x, y) ∈ T̂&∃𝛼 > 1 , while considering the definition of expansion scenario for 
(�x, �y) in (3), with (�x, �y) ∈ Zm+s

+
 then (𝛼x, 𝛼y) ∈ T̂ .

b.	 If (x, y) ∈ T̂&∃0 ≤ 𝛼 < 1 , while considering the definition of contraction scenario 
for (�x, �y) in (4), with (�x, �y) ∈ Zm+s

+
 then (𝛼x, 𝛼y) ∈ T̂ .
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B5. Minimum extrapolation: T̂  is the minimal set that satisfies axioms B1 − B5.
The third axiom B3 states that if we can produce a certain quantity of outputs 

with a given quantity of input (all with integer values), then we can also produce 
less integer-valued outputs with more integer-valued inputs. The notion of natural 
disposability (B3) can be interpreted as the integer-restricted counterpart of free dis-
posability. Standard convexity is also restricted with integer-valued data and written 
by (B2) as natural convexity. Both parts of (B4) can be interpreted as discrete vari-
ants of RTS axioms since they limit continuous re-scaling of input and output data.

The following theorem proves that under our adapted set of axioms, reference 
technology TIDEA

HRS
= THRS ∩ Zm+s

+
 is the smallest set among all possible technologies 

that satisfy the mentioned axioms.

Theorem 1  Production set TIDEA
HRS

 is the intersection of all sets that satisfy the axioms 
of feasibility (B1), natural convexity (B2), natural disposability (B3), and natural 
selective proportionality (B4).

Proof  See Appendix 1. Referencing Theorem 1, TIDEA
HRS

 is the minimum extrapolation 
technology set under the refined set of axioms, B1 − B4 . Now consider the follow-
ing PPS of the HRS technology that is consist of all integer-valued input and output 
data:

To avoid non-linear terms in (6) and following Podinovski (2004), we use some 
variable substitutions as follows:

Let, �j + �j − �j = �j�j�j and �j − �j = �j�j , j = 1,… , n. Accordingly, we have; 
�j = �j�j(�j − 1), �j = �j

(
1 − �j

)
, j = 1,… , n. This means that the technology set 

TIDEA
HRS

 can be equivalently state as:

(6)TIDEA
HRS

=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

(x, y) ∈ Zm+s
+

��������������

xP ≥

n∑
j=1

�j

�
�j�jx

P
j

�
, yP ≤

n∑
j=1

�j

�
�j�jy

P
j

�

xNP ≥

n∑
j=1

�jx
NP
j

, yNP ≤

n∑
j=1

�j

�
�jy

NP
j

�

N∑
J=1

�j = 1 ,∀j, �j ≥ 0, �j ≤ 1, �j ≥ 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭

(7)

TIDEA
HRS

=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

(x, y) ∈ Zm+s
+

��������������

xP ≥

n∑
j=1

�
�j + �j − �j

�
xP
j
, yP ≤

n∑
j=1

�
�j + �j − �j

�
yP
j ,

xNP ≥

n∑
j=1

�jx
NP
j
, , yNP ≤

n∑
j=1

�
�j − �j

�
yNP
j

n∑
j=1

�j = 1 ,∀j, �j − �j ≥ 0,�j ≥ 0, �j ≥ 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
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TIDEA
HRS

 is linear in terms of the unknown variables �j, �j and �j . The right-hand side 
of the constraints of TIDEA

HRS
 are free of scaling variables.

Having access to the structure of TIDEA
HRS

 , now we can proceed to evaluate the per-
formance measurement of any production units in the new technology set.

5 � Efficiency assessment

Analysis step is now performed by constructing the true production set based on the 
refined axioms by computing efficiency measures for the observed units. To do this, 
we adapt Farrell (1957)’s input radial measure in the new discrete production set 
TIDEA
HRS

 to suggest the following radial measure for evaluating DMUk:

Adapting this radial measure with the linear version of the HRS technology, 
introduced by Podinovski (2004), we provide the following input-oriented MILP 
model for measuring efficiency score of DMUk:

(8)EffIDEA
HRS

(
xk, yk

)
= min{�|∃(x, y) ∈ TIDEA

HRS
;�xk ≥ x, yk ≤ y}

(9)

min
𝜆,𝜇,𝜈,

⌣
x

𝜃

s.t.

n∑
j=1

�
𝜆j + 𝜇j − 𝜈j

�
xIP
i1j

≤
⌣

x
IP

i1k
i1 = 1, ...,m1

⌣

x
IP

i1k
≤ 𝜃xIP

i1k
i1 = 1, ...,m1

n∑
j=1

𝜆jx
INP
i2j

≤
⌣

x
INP

i2k
i2 = 1, ...,m2

⌣

x
INP

i2k
≤ 𝜃xINP

i2k
i2 = 1, ...,m2

n∑
j=1

�
𝜆j + 𝜇j − 𝜈j

�
yIP
r1j

≥ yIP
r1k

r1 = 1, ..., s1

n∑
j=1

�
𝜆j − 𝜈j

�
yINP
r2j

≥ yINP
r2k

r2 = 1, ..., s2

n�
j=1

𝜆j = 1

⌣

x
IP

i1k
∈ Z+ i1 = 1, ...,m1

⌣

x
NIP

i2k
∈ Z+ i2 = 1, ...,m2

𝜆j − 𝜈j ≥ 0,𝜇j ≥ 0, 𝜈j ≥ 0 j = 1, ..., n
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The proposed model requires the outmost input radial reduction to reach an integer-
valued point in the corresponding PPS that dominates DMUk . This approach is differ-
ent from the first proposed model by Lozano and Villa (2006). For dealing with Pareto-
efficiency, the second phase optimization model is needed to obtain non-dominated 
target points in the corresponding PPS. A modified second phase model is suggested in 
Jie et al. (2015).

In the presence of proportional inputs/outputs and integer-valued inputs, this model 
can be formulated as follows:

Model (10) is solved to obtain benchmark units. Having access to the optimal solu-
tion of this model, the benchmark units can be obtained from the following formula:

(10)

𝜌∗ = max

m1�
i1=1

s−IP
i1k

+

s2�
r2=1

s+IP
r1k

+

m2�
i2=1

s−INP
i2k

+

s2�
r2=1

s+INP
r2k

+

m1�
i1=1

ŝ−IP
i1k

+

m2�
i2=1

ŝ−INP
i2k

s.t.

n∑
j=1

�
𝜆j + 𝜇j − 𝜈j

�
xIP
i1j
− ŝ−IP

i1k
=

⌢

x
IP

i1k
i1 = 1, ...,m1

n∑
j=1

�
𝜆j + 𝜇j − 𝜈j

�
yIP
r1j

− s+IP
r1k

= yIP
r1k

r1 = 1, ..., s1

n∑
j=1

𝜆jx
INP
i2j

+ ŝ−INP
i2k

=
⌢

x
INP

i2k
i2 = 1, ...,m2

n∑
j=1

�
𝜆j − 𝜈j

�
yINP
r2j

− s+INP
r2k

= yINP
r2k

r2 = 1, ..., s2

𝜃∗xIP
i1k

− s−IP
i1k

≥
⌢

x
IP

i1k
i1 = 1, ...,m1

𝜃∗xINP
i2k

− s−INP
i2k

≥
⌢

x
INP

i2k
i2 = 1, ...,m2

n�
j=1

𝜆j = 1

𝜆j − 𝜈j ≥ 0, 𝜆j ≥ 0,𝜇j ≥ 0, 𝜈j ≥ 0 j = 1, ..., n

⌢

x
IP

i1k
∈ Z+,

⌢

x
NIP

i2k
∈ Z+ i1 = 1, ...,m1, i2 = 1, ...,m2

s−IP ≥ 0, s+IP ≥ 0, s−INP ≥ 0, s+INP ≥ 0

ŝ−IP
i1k

≥ 0, ŝ−INP
i2k

≥ 0 i1 = 1, ...,m1, i2 = 1, ...,m2

(11)
(
xIP
i1k

− s−IP
∗

i1k
, yIP

r1k
+ s+IP

∗

r1k
, xINP

i2k
− s−INP

∗

i2k
, yINP

r2k
+ s+INP

∗

r2k

)
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6 � Illustrative examples

In this section, we apply our provided approach for illustration and comparison pur-
poses. First, we present a simple example to compare the results of the traditional 
and the new models in the efficiency evaluation of the observed units. Then we 
apply our provided approach in the performance assessment of 30 high schools in 
Iran.

6.1 � A simple example

To illustrate the applicability of the proposed approach, we take data for 10 hypo-
thetical DMUs, containing single input i1 and two outputs o1 and o2 , where all the 
data is assume to be integer. It is also assumed that i1 and o1 are proportional. The 
input/output data set are listed in Table 1.

Let DMU5 be the unit under evaluation. When the input and the first output are 
proportional, the proposed model by Podinovski (2004) may be stated as follows:

By computing the above linear programming model the optimal (non-zero) 
results of assessing DMU5 is �∗ = 0.97, �∗

3
= 0.32, �∗

4
= 0.68,�∗

4
= 0.07.

Now consider the new model presented for dealing with both proportionality and 
integer-valued data:

(12)

min �

s.t.

33
(
�1 + �1 − �1

)
+ 39

(
�2 + �2 − �2

)
+ 35

(
�3 + �3 − �3

)
+

32
(
�4 + �4 − �4

)
+ 36

(
�5 + �5 − �5

)
+ 35

(
�6 + �6 − �6

)
+

34
(
�7 + �7 − �7

)
+ 40

(
�8 + �8 − �8

)
+ 38

(
�9 + �9 − �9

)
+

39
(
�10 + �10 − �10

)
≤ 36�

22
(
�1 + �1 − �1

)
+ 54

(
�2 + �2 − �2

)
+ 76

(
�3 + �3 − �3

)
+

84
(
�4 + �4 − �4

)
+ 87

(
�5 + �5 − �5

)
+ 43

(
�6 + �6 − �6

)
+

33
(
�7 + �7 − �7

)
+ 45

(
�8 + �8 − �8

)
+ 23

(
�9 + �9 − �9

)
+

54
(
�10 + �10 − �10

)
≥ 87

43
(
�1 − �1

)
+ 51

(
�2 − �2

)
+ 176

(
�3 − �3

)
+ 34

(
�4 − �4

)
+

80
(
�5 − �5

)
+ 5

(
�6 − �6

)
+ 136

(
�7 − �7

)
+ 56

(
�8 − �8

)
+

67
(
�9 − �9

)
+ 68

(
�10 − �10

)
≥ 80

10∑
j=1

�j= 1

�j − �j ≥ 0j = 1, ..., 10

�j ≥ 0j = 1, ..., 10
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Solving the above MILP model for evaluating DMU5 leads to 
�∗ = 1, �∗

3
= 1,�∗

4
= 0.61, �∗

3
= 0.53 . Comparing the solutions indicaates different 

results for DMU5 in the two models. In Model (12), unit is classified as inefficient 
while in (13) it is efficient. This is a notable difference. The new MILP model is 
designed to compare the unit under evaluation with the integer-valued production 
possibilities. With regards to the integrality assumption, DMU5 is compared with 
the continuous part of production set in (12) which is not necessarily feasible. This 
gives evidence to the fact that in applications where integer-valued data exist, apply-
ing appropriate production set is necessary and the new model provides more reli-
able results.

(13)

min 𝜃

s.t.

33
(
𝜆1 + 𝜇1 − 𝜈1

)
+ 39

(
𝜆2 + 𝜇2 − 𝜈2

)
+ 35

(
𝜆3 + 𝜇3 − 𝜈3

)
+

32
(
𝜆4 + 𝜇4 − 𝜈4

)
+ 36

(
𝜆5 + 𝜇5 − 𝜈5

)
+ 35

(
𝜆6 + 𝜇6 − 𝜈6

)
+

34
(
𝜆7 + 𝜇7 − 𝜈7

)
+ 40

(
𝜆8 + 𝜇8 − 𝜈8

)
+ 38

(
𝜆9 + 𝜇9 − 𝜈9

)
+

39
(
𝜆10 + 𝜇10 − 𝜈10

)
≤ x̃

22
(
𝜆1 + 𝜇1 − 𝜈1

)
+ 54

(
𝜆2 + 𝜇2 − 𝜈2

)
+ 76

(
𝜆3 + 𝜇3 − 𝜈3

)
+

84
(
𝜆4 + 𝜇4 − 𝜈4

)
+ 87

(
𝜆5 + 𝜇5 − 𝜈5

)
+ 43

(
𝜆6 + 𝜇6 − 𝜈6

)
+

33
(
𝜆7 + 𝜇7 − 𝜈7

)
+ 45

(
𝜆8 + 𝜇8 − 𝜈8

)
+ 23

(
𝜆9 + 𝜇9 − 𝜈9

)
+

54
(
𝜆10 + 𝜇10 − 𝜈10

)
≥ 87

43
(
𝜆1 − 𝜈1

)
+ 51

(
𝜆2 − 𝜈2

)
+ 176

(
𝜆3 − 𝜈3

)
+ 34

(
𝜆4 − 𝜈4

)
+

80
(
𝜆5 − 𝜈5

)
+ 5

(
𝜆6 − 𝜈6

)
+ 136

(
𝜆7 − 𝜈7

)
+ 56

(
𝜆8 − 𝜈8

)
+

67
(
𝜆9 − 𝜈9

)
+ 68

(
𝜆10 − 𝜈10

)
≥ 80

36𝜃 ≥ x̃

x̃ ∈ Z+
10∑
j=1

𝜆j = 1

𝜆j − 𝜈j ≥ 0j = 1, ..., 10

𝜈j ≥ 0 j = 1, ..., 10

Table 1   Input / output data DMU i1 o1 o2 DMU i1 o1 o2

1 33 22 43 6 35 43 5
2 39 54 51 7 34 33 136
3 35 76 176 8 40 45 56
4 32 84 34 9 38 23 67
5 36 87 80 10 39 54 68
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Computed scores for the rest of the units are reported in Table 2, where R-EFFI 
and I-EFFI stand for efficiencies with real and integer-valued data, respectively. 
Comparing the columns under R-EFFI and I-EFFI, we can find that seven out of 
units have different efficiency scores in these two approaches. Moreover, as the 
Table shows, although, DMU5 is efficient in R-EFFI, it is inefficient in I–EFFI. This 
shows that the classification of efficient and inefficient units is quite different in these 
approaches. The new method brings more discrimination power into evaluation.

Finally, the FDH model is run for the data set by ignoring the selective propor-
tionality and integrality assumptions. The results are reported in the last column of 
Table 2. As the results show, five out of ten units prevail as efficient. This indicates 
that the FDH model overestimates the efficiency of the units.

6.2 � Empirical example

Performance analysis and evaluation in educational parts such as schools and universities 
have been widely studied by researchers from different perspectives. Kadoić et. al. (2018) 
in their research considered an approach that includes problem identification, objectives of 
a solution, design and development, demonstration of the artifact, evaluation, and dissemi-
nation for strategic decision-making in higher education. They have used a design science 
research process and provided new decision-making with two components that are based on 
the analytic network process and social network analysis. Begičević et. al. (2010) considered 
two plans in higher education institutions. First, the authors have made a plan ready for those 
activities yield in the execution of a portfolio of projects at the institutional level. Second, 
those scenarios are important for decision on whether to start a new project application. In 
this scenario, it is also dealt with that which project to choose, in case of several project 
ideas and limited resources. Jablonsky (2016), presented a new method, for overcoming the 
disadvantage of existing models, that considered efficiency assessment of decision-making 
units within the whole production chain. Cordero et. al. (2016) presented a new method for 
educational performance assessment in Spanish. They have used the non-parametric free 
disposal hull model and provided a decomposition based on overall inefficiency between 
different components while considering the differences between public and state-subsidized 
private schools. Čampelj et. al. (2018), provided a multi-attribute modeling approach for 
assessing the implementation of Information and Communication Technologies in schools. 
They claimed that the key feature of their study is utilizing qualitative value scales for attrib-
utes that do not have exact values. Cherchye et al. (2019) presented a unified method for 
assessing the productivity of secondary schools in the DEA framework.

Table 2   Efficiency scores of 
Model (8) and (9)

DMU R-EFFI I-EFFI FDH DMU R-EFFI I-EFFI FDH

1 0.297 0.303 1 6 0.486 0.486 0.914
2 0.563 0.564 0.897 7 0.795 0.826 1
3 1 1 1 8 0.468 0.475 0.875
4 1 1 1 9 0.358 0.368 0.895
5 0.974 1 1 10 0.576 0.590 0.897
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All of the previously studied DEA-based research, considered the constant or 
variable returns to scale models, and issues such as integrality of the data and 
selective proportionality are not considered. However, two important points must 
be considered in performance analysis in educational parts: factors such as the 
number of students and number of teachers are integer and real values are not 
allowed to these factors. Moreover, it is possible to have a subset of inputs such 
as sport training camps that are not proportional with a subset of outputs such as 
the number of students who won in sports competitions. These issues show that 
there is a need to modify the existing approaches in such a way that they can be 
applicable in these hybrid cases.

In this section, an empirical application on performance evaluation of thirty high 
schools in Iran is presented. According to the Iranian constitution, education for all 
Iranian children and adolescents is free of charge, and the government has to provide 
education for all through the Ministry of Education. Iran’s educational system had ele-
mentary, secondary, and pre-university courses. In the final years of the eighties, the 
educational system changed to 3–3–3–3. This system has generally changed to six years 
of elementary and secondary education. The first people trained in this system were 
born in the second half of the 79th and the first half of the 80 s who had the elementary 
sixth grade. They graduated at the end of the first high school, and this year they study 
at eleventh grade. Practicing and technical students require skills in vocational schools 
and institutes of labor and knowledge. Graduates from the pre-university period entered 
the university if they succeeded in the national examinations (entrance examination), 
which had been removed by changing the system and replacing it with the sixth elemen-
tary element. Student Olympiads are a test that is held annually at high school students’ 
level. The purpose of this test is to boost talented Iranian student and selecting a multi-
player team to take part in international scientific Olympiads. At present, the student 
Olympiads in the country are held in eight literary: mathematical, biology, rehabilita-
tion stem and medical stem cells, chemistry, physics, computers and astronomy, astro-
physics and geography, among which the Stem Cell and Medical Stem Cell Olympiad 
was rebuilt. Other Olympiads are officially held and include exam facilities.1

Based on the foregoing discussion, the performance of the Iranian educa-
tional system is an important issue that needs to be analyzed in dept. This sec-
tion applies our proposed model to data of thirty high schools in Tehran. There 
are two main education types in Iran2: K-12 and higher educations. K-12 indi-
cates the sum of kindergarten, primary and secondary education in the country 
which takes 12 years. K-12 education in Iran is under the supervision of the min-
istry of education3 and higher education is supervised by the ministry of science, 
research, and technology4 and the ministry of health and medical education*.5

We investigated the performance of high school education systems in Tehran 
by comparing and contrasting our new approach by proportional DEA models 

1  http://​olymp​iad.​sanje​sh.​org/​En/​Defau​lt.​aspx.
2  https://​en.​wikip​edia.​org/​wiki/​Educa​tion_​in_​Iran.
3  http://​medu.​ir/​fa/.
4  https://​www.​msrt.​ir/​en.
5  * http://​www.​behda​sht.​gov.​ir/​page/​en.

http://olympiad.sanjesh.org/En/Default.aspx
https://en.wikipedia.org/wiki/Education_in_Iran
http://medu.ir/fa/
https://www.msrt.ir/en
http://www.behdasht.gov.ir/page/en
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with integer-valued input/output data and the tradidional FDH model. More-
over, we highlighted the efficiency scores and also target points with different 
approaches. Table  3 summarises the selected inputs and outputs for 30 high 
schools in Tehran.

I1 indicates the number of students in their third year of high school. This quantity 
shows the population density of each high school that obviously takes integer values. I2 
designates the number of specialized teachers for classes held in mathematics and phys-
ics. A specialized teacher needs to be employed for each specific course work that can 
teach and mentor students in their schooling. These teachers may also assist students in 
university entrance exams and the Olympiad selection process. I3 specifies the number 
of sports training camps held in each high school to support those interested in sports 
competitions and activities. O1 shows the number of students who passed all course work 
and graduated in their third year-inherently. O2 is the number of students who succeded 
in university entrance exams plus the number of students who entered to the Olympiad 
competitions. O3 indicates the number of students who won in sports competetions.

The important issue here is the possibility of having a subset of inputs that is 
proportional with a subset of outputs. This would point out that alterations in the 
number of teachers and the number of students who are able to pass all the courses 
and graduate from their current level have the same portion as the number of stu-
dents who pass university central exams and Olympics. Thus, these subsets of inputs 
and outputs are considered to be proportional to each other since factors such as ‘the 
availability of sports facilities’ are important. Therefore, I3 and O3 are not considered 
to be proportional to each other, and they are treated as non-proportional input and 
output.

Table 4 exhibits the integer-valued inputs and outputs data for 30 high schools in 
Tehran.

Table 5 provides the results of efficiency analysis while applying real and inte-
ger-valued models for evaluating efficiency scores. The results point out that the 
efficiency scores obtained from the new integer-valued model (I-EFFI) are always 
greater than or equal to those obtained from the traditional real valued model 
(R-EFFI). The maximum difference is related to DMU3 where its I-EFF and R-EFF 
scores is 0.7632 and 0.7223, respectively. There are 13 efficient DMUs by our new 
integer-valued approach meanwhile this number for the R-EFFI approach is reduced 
to 9. To be more specific, DMUs 19, 20, 23, and 25 are in the efficient set in our 
approach while they are in the inefficient set in the real-valued approach.

Table 3   Inputs and outputs of high schools

Inputs Outputs

Description Notation Description Notation

Students I1 Graduate students O1

Expert teaching staff I2 Students passed central exams of uni-
versities and Olympiad

O2

Sport training camps I3 Students won sport medals O3
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Taking integer-valued data and attempting to calculate non-dominated target 
points affect the analysis so that feasible solutions may not be achievable in some 
cases. This is not the case in the presented approach here because it is attempted to 
find suitable points within the corresponding PPS and not merely on the efficient 
frontier. These two approaches differ from each other as some units are efficient 
considering integer-valued data since they are evaluated as inefficient units when a 
model is not obliged to search for the integer-valued benchmark. Efficiency scores 
of these units exhibit a decline when respectively considered having integer and real 
data like DMUs 19, 20, 23, and 25 that cover 13.3% of the results.

DMUs do exist that are inefficient in both analyzes but with different scores. 
These units did not manage to efficiently use inputs to produce outputs. As an 
important matter, these units should imitate the corresponding target units out of the 
set of DMUs under evaluation to make changes in their strategy in order to reach an 
efficient state. These units constitute 56.7% of all results. Around 30% of the high 
schools remain efficient in both analyzes.

Restricting the analysis to integer-valued data does not have an effect on the oper-
ation of the units. As it may be observed, efficiency classification taking integer-val-
ued data into consideration differs from real-valued data in the analysis. The average 
of efficiencies in real and integer analyses are quite close, however, 0.93338 and 
0.940167 respectively. It is important to mention that these results are different in 
the interpretation and classification of efficient and inefficient units. Some units per-
form efficiently with real-valued data but not with integer-valued data are considered 
in the analysis. Thus, relevant managers would change their strategies. For ineffi-
cient units, target units need to be introduced to be followed and imitated (Table 5).

The last notable point is that the conventional proportional model may fail to 
produce target points in the presence of integer-valued data. Table summarizes the 

Table 4   Inputs / outputs of 30 high schools

DMU I1 I2 I3 O1 O2 O3 DMU I1 I2 I3 O1 O2 O3

1 113 10 14 88 51 23 16 110 10 19 94 75 7
2 133 12 20 112 75 13 17 95 7 18 89 71 5
3 114 9 17 68 61 12 18 136 8 17 112 93 12
4 113 11 18 95 76 2 19 88 7 14 81 66 5
5 145 11 21 130 107 35 20 99 7 17 89 72 10
6 118 9 15 104 57 33 21 107 7 19 94 68 22
7 91 7 16 83 69 7 22 128 12 22 98 75 3
8 83 8 14 71 39 4 23 110 7 14 90 75 22
9 124 10 11 101 72 10 24 95 8 18 82 61 3
10 94 9 19 73 74 1 25 137 9 13 103 94 5
11 111 11 18 84 60 8 26 104 6 19 78 62 93
12 125 12 15 106 90 10 27 126 9 21 104 85 26
13 96 10 17 76 61 3 28 144 12 16 106 84 3
14 140 9 18 106 82 3 29 96 9 15 89 71 2
15 119 11 22 104 86 9 30 131 11 19 106 85 7
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achieved targets of real-valued data of Podinovski (2004) and the integer-valued 
data of Models (9) and (10). Some targets are identical by all three models and some 
others differ which have been highlighted. In the highlighted cells of Table 6, the 
measured targets by the first phase Model (9) and the second phase Model (10) are 
presented within a pair of brackets and parentheses, respectively.

As already indicated, initial input data have integer values. Therefore, it is 
rational that corresponding targets must also have integer values. This is not a given 
in the conventional HRS model. Comparing the two analyzes with real- and real-
valued data of Model (9), DMUs may have similar or dissimilar efficiency scores. 
Some units such as DMU3 and DMU27 have different efficiency scores and unit 
DMU29 has scored the same in both analyzes. In performance analysis, target setting 
(benchmarking) is also of great importance. It assists decision-makers in better per-
formance analysis of inefficient units and suggesting improvement schemes. Targets 
of efficient DMUs are not scrutinized since they perform efficiently, and there is 
no need to introduce specific targets from among the sets of DMUs. A notable dif-
ference could be observed in target setting for inefficient units. For this group, the 
computed targets of 70% of the units in the HRS model are not applicable when con-
sidering integer-valued inputs. In accordance with obtained results for target units, 
it is observed that these results are not just obtained by rounding (up or down) the 
data values. Rounding the obtained results is not always an acceptable solution since 
in some cases it may lead to infeasible points. This rounding up may be verified in 
units such as DMUs 1, 3, 25, and 15.

Consider relations in (11) for introducing non-dominated targets. The model pre-
sented by Kuosmanen and Kazemi Matin (2009) is used to find the efficient integer-
valued points of the PPS to introduce target (benchmark) units. After solving Model 

Table 5   Efficiencies obtained by Model (9) and Podinovski et al. (2014)

DMU R-EFFI I-EFFI FDH DMU R-EFFI I-EFFI FDH

1 0.9103 0.9286 1.0000 16 0.9171 0.9273 1.0000
2 0.9121 0.9173 1.0000 17 1.0000 1.0000 1.0000
3 0.7223 0.7632 0.9649 18 1.0000 1.0000 1.0000
4 0.899 0.9027 1.0000 19 0.998 1.0000 1.0000
5 1.0000 1.0000 1.0000 20 0.9961 1.0000 1.0000
6 1.0000 1.0000 1.0000 21 1.0000 1.0000 1.0000
7 1.0000 1.0000 1.0000 22 0.8172 0.8203 0.9844
8 0.9203 0.9277 1.0000 23 0.9914 1.0000 1.0000
9 1.0000 1.0000 1.0000 24 0.9213 0.9263 0.9579
10 1.0000 1.0000 1.0000 25 0.9643 1.0000 1.0000
11 0.8185 0.8288 0.9444 26 1.0000 1.0000 1.0000
12 0.9529 0.9600 1.0000 27 0.9348 0.9683 1.0000
13 0.8485 0.8542 0.9167 28 0.7886 0.7917 1.0000
14 0.8729 0.8889 0.9714 29 0.9896 0.9896 1.0000
15 0.9569 0.9664 1.0000 30 0.8693 0.8779 1.0000
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(9) the second phase Model (10) is used for calculating the benchmarks with integer-
valued components.

Optimal slacks obtained from solving Model (10) are listed in Table 7 for DMUs 
with at least one non-zero slack.

Moreover, Table 8 demonstrates the obtained input targets acquired from Podi-
novski et al. (2014) model when all data is assumed to be real. As can be easily veri-
fied, some of these points dominate acceptable integer-valued targets. It is rational 
and logical that targets not having integer data cannot be considered as acceptable 
targets when integer data exist in the analysis.

Consider Table 8 and Model (9) for assessing DMU1 . The observed input vector 
for this DMU is (113, 10, 14) and the obtained results show that input radial real-
valued target points for this unit to be (104.9286, 9.285714, 13) and the resulting 
suitable integer-valued target point as (104, 9, 13) . It may be noted for further discus-
sion of results that input improvements are (0.9285682, 1.285714, 0) after non-radial 
improvement and solving the second phase model.

Table 6   Real-valued and integer-valued targets

DMUs I1 I2 I3 DMUs I1 I2 I3

1 104.929
[104] (104)

9.286
[9] (8)

13 16 101 9.182
[9] (9)

17.445
[17](17)

2 122 11.008
[10] (10)

18.346
[18] (18)

17 95 7 18

3 87 6.868
[6] (6)

12.974
[12] (12)

18 136 8 17

4 102 9.929
[9] (8)

16.248
[16] (12)

19 88 7 14

5 145 11 21 20 99 7 17
6 118 9 15 21 107 7 19
7 91 7 16 22 105 9.844

[9] (8)
18.049
[18] (13)

8 77 7.422
[7] (7)

12.988
[12] (12)

23 110 7 14

9 124 10 11 24 88 7.411
[7] (7)

16.674
[16] (13)

10 94 9 19 25 137 9 13
11 91 9.018

[9] (9)
14.757
[14] (14)

26 104 6 19

12 120 11.52
[11] (10)

14.4
[14] (14)

27 122 8 16

13 82 8.542
[8] (7)

14.521
[14] (13)

28 114 9 12

14 124.444
[124] (124) 8 16 29 95 8 14
15 114 10.538

[10] (9)
21.076
[21] (16)

30 114 9 16
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Applying these non-radial changes to the real-valued input radial target, the 
integer-valued point (104, 8, 13) is obtained which is a better estimate than the 
integer-valued target point obtained from the first phase model. Additionally, 
it can be observed that by non-radial improvements, (0, 1.752632, 0) , the point 
(104, 7.247368, 13) is obtained from this model. This point is non-dominated since 
it is obtained from the second phase model of HRS Podinovski et  al. (2014), but 
it does not have integer values. Thus, it cannot be an acceptable target unit for 
the DMU under evaluation. Although, it dominates the integer input target and is 
located on the frontier. Consequently, (104, 8, 13) is the best integer-valued input tar-
get point. Model (10), the second phase model, maximizes the non-radial improve-
ment and returns the optimal output slacks as (4.574, 22.795, 0.232) . For DMU2 , 
the initial input data is (113, 12, 20) and the real-valued input target point is (122, 
11.007, 18.346) when utilizing the first phase Model (9). Imposing limitations, the 
integer-valued input target point is (122, 10, 18) and considering Model (10), the 
second phase model, all the input and output slacks are equal to zero.

In evaluating DMU4 the input vector is (113, 11, 18) . Solving the first phase 
Model (9) leads to the real-valued input radial target (102, 9.929, 16.248) . The near-
est dominated point is (102, 9, 16) . Input and output slacks are (1.929, 0, 4.248) and 
(0, 0.098, 1.358), respectively for non-radial improvements reaching the non-domi-
nated point. Thus, input integer-valued target is (102, 8, 12) . If it is desired to find a 
non-dominated point, Model (10) produces slacks of (0, 1.454, 4.045) which lead to 
point (102, 7.546, 11.955) . This point dominates the integer-valued point obtained 
from the second phase model. However, it is not considered suitable as a target point 
due to it containment of real-valued input.

Table 7   Optimal slacks obtained from Model (10)

DMUs I1 I2 I3 o1 o2 o3 Sum

1 0.929 1.286 0 4.574 22.795 0.232 29.816
2 0 0 0 0 0 0 0
3 0 0.868 0.974 8.67 0.229 0 10.744
4 0 1.929 4.248 0 0.098 1.358 7.633

12 0 1.52 0.4 2.665 0 0.973 5.558
13 0 1.542 1.521 0 2.344 5.498 5.498
14 0.4444 0 0 0 0.589 28.5 29.533
15 0 1.5378 5.0756 0 0 0.295 6.908
19 0 0 0 0 0 1.275 1.275
20 0 0 3 929 0 0.119 4.048
22 0 1.844 5.047 0 3.387 0.185 10.463
23 0 0 0 2.678 0 6.206 8.885
24 0 0.411 3.674 0 4.665 0.5367 9.286
25 3 0 0 14.188 0.258 18.25 35.695
27 0 0.714 4.333 0.614 0 0 5.662
28 0 0.5 0.667 0 0.849 1.45 3.466
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It should now be clear that solving Model (10) is necessary since the second phase 
model can find better target points when assessing most DMUs with integer values. 
Some of the DMUs are efficient while being assessed by Model (10) and there is no 
need for finding corresponding target units for them as they perform efficiently. In 
obtained results for some inefficient DMUs, it is only possible to find radial integer-
valued input targets, and it is not possible to find improvements in inputs by non-radial 
changes. This indicates that the optimal value of the objective function of the second 
phase model for finding an integer-valued target point is zero. Finding reference points 
is of great importance in the efficiency evaluation of DMUs and target setting.

Having this information, managers may establish a role model for their systems. 
By manipulating them, managers can reach an efficient states. As Podinovski (2004) 
stated, for any j where𝜆∗

j
− 𝜈∗

j
> 0 , the corresponding DMUj is efficient. Therefore, 

referenced DMUs by this formula are detected from the analysis as presented in 
Table. As indicated in Table 9 there are 10 efficient units: DMUs 5, 6, 7, 9, 10, 17, 
18, 19, 21, and 26. In accordance with the basic definition of the reference set, the 
mentioned efficient DMUs have a positive value of�∗ − �∗.

Models (9) and (10) show radial and non-radial changes in the inputs. With these 
changes, it is possible to reach points with integer values that dominate the DMUs 
under assessment. As it can be seen, based on the optimal solution of the first and 
the second phase models listed in Table 8, not all these points have integer values. 
Thus, although they dominate integer target points obtained from our proposed 
model, they cannot be considered as acceptable target units. For more substantial 
analysis of the results, norm L1 of three input elements to their corresponding tar-
get points is calculated. Units with the smallest norm L1 values are DMUs 20, 25, 
and 29. Corresponding norm L1 value for all of these three units is 3 and the cor-
responding efficiency scores are 0.9961, 0.9643, and 0.99896 respectively. It may 
be stated that these units perform efficiently. The high efficiency scores indicate that 

Table 8   Input targets obtained 
from Podinovski et al. (2014)

DMU I1 I2 I3 DMU I1 I2 I3

1 104 7.247 13 16 102 9 17
2 122 10 18 17 95 7 18
3 86.363 6 12 18 136 8 17
4 102 7.546 11.955 19 88 6.627 13.898
5 145 11 21 20 99 7 13.834
6 118 9 15 21 107 7 19
7 91 7 15 22 105 7.757 12.74
8 77 7 12 23 110 7 14
9 124 10 11 24 88 6.508 12.249

10 94 9 19 25 133.404 9 13
11 91 9 14 26 104 6 19
12 120 9.171 14 27 122 8 16.49
13 82 6.086 12.405 28 114 8.403 12
14 124 8 16 29 95 8 14
15 114 8.717 16.546 30 114 9 16
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it is rational for the corresponding norm L1 to be small. DMUs 11, 13, and 28 have 
larger norm L1 values of 35, 26, 21, and 37 respectively; their individual efficiency 
scores are 0.7223, 0.8181, 0.8485, and 0.7883. High norm L1 values are relatively 
predicted by the efficiency scores, as mentioned above. This study compares varia-
tions of three inputs with their target points. Considering the norm L1 values, it may 
be said that x1 has more reduction after x3 and then x2.

Although the CRS and VRS technologies respectively imply safer assumptions 
and better discrimination, HRS technology is a more powerful tool for efficiency 
discrimination. Therefore, in order to increase the discriminatory power of DEA 
models, it may be more useful to consider HRS over conventional technologies. This 
may be particularly useful when inputs and outputs do not necessarily exhibit the 
same proportionality.

The VRS technology is more limited than the HRS technology because the for-
mer technology is a subset of the latter one. Comparing average efficiency in HRS 
and VRS technologies, the former is 0.95 and the latter is 0.93. Note that that HRS 
is not a subset of CRS technology. However, there are sets in the sample that exhibit 
differing efficiencies that may be lower in CRS or HRS models. Note that simple 
rounding methods for obtaining integer-valued points may lead to dominated or even 
infeasible points. Thus, utilizing HRS analysis is more discriminating.

We have also applied the FDH model to this data set. The results of efficiency 
scores are listed in the last column of Table 5. The target points corresponding to inef-
ficient units are given in Table 10. All the computed efficiency scores are estimated 
tobe greater than 0.9000 and 24 units were classified as efficient, while only 6 units 
prevailed as inefficient. This clearly shows that the efficiency scores are overestimated.

Table 9   Reference set

DMU (𝜆∗
j
− 𝜈∗

j
> 0) DMU (𝜆∗

j
− 𝜈∗

j
> 0)

1 DMU26(0.25) 16 DMU5(0.097) DMU17(0.718)

2 DMU5(0.287) DMU17(0.590) 17 DMU17(1)

3 DMU9(0.0375) DMU26(0.125) 18 DMU18(1)

4 DMU5(0.0955) DMU17(0.006) 19 DMU19(1)

5 DMU5(1) 20 DMU17(0.266) DMU26(0.084)

6 DMU6(1) 21 DMU21(1)

7 DMU7(1) 22 DMU5(0.063) DMU17(0.196)

8 DMU5(0.0895) DMU6(0.0263) 23 DMU18(0.115) DMU26(0.288)

9 DMU9(1) 24 DMU5(0.076) DMU17(0.178)

10 DMU10(1) 25 DMU26(1)

11 DMU5(0.210) 26 DMU5(0.099) DMU17(0.054)

12 DMU5(0.294) DMU26(0.007) 27 DMU5(0.089) DMU17(0.015)

13 DMU5(0.140) DMU17(0.085) 28 DMU5(0.082) DMU17(0.026)

14 DMU21(0.375) DMU26(0.25) 29 DMU5(0.136) DMU17(0.518)

15 DMU5(0.109) DMU7(0.781) 30 DMU5(0.121) DMU17(0.531)



3455

1 3

Selective proportionality and integer‑valued data in DEA:…

As a final word, it can strongly be stated that the proposed model is more useful 
than the prior arts in the presence of selective proportionality and integer-valued 
data.

7 � Conclusion

In real applications of DEA, we sometimes face cases in which some input/output 
variables are integer-valued and simultaneously, a subset of input variables is not 
proportional with a subset of output variables. Ignoring this important issue leads to 
a misestimating of efficiency analysis. This paper introduces an axiomatic founda-
tion to construct a production technology set with selective proportionality assump-
tion in the presence of integer-valued data. A novel MILP model is then provided to 
compute modified Farrell measure with respect to both HRS and integrality assump-
tions. A numerical example of an actual data set for 30 high schools in Tehran is 
utilized to demonstrate the proposed approach. This work demonstrates that effi-
ciency obtained from the proposed model is more reliable than those obtained from 
conventional HRS models where integrality assumption is completely overlooked. 
Insignificant but notable differences are reported in setting targets for both conven-
tional HRS and the proposed approach. It is illustrated that the proposed model is 
useful for benchmarking.

Two potential research issues need worth mentioning. First, one can explore from 
our proposed model to incorporate selective convexity and provide Pareto-efficient 
targets. Second, one could think of extending the approach to study the nature of 
returns to scale and determining an optimal scale size for the observations. These 
may consider as interesting challenges in expanding our knowledge on the subject.

Table 10   Input–Output targets obtained from FDH model

DMU I1 I2 I3 o1 o2 o3 DMU I1 I2 I3 o1 o2 o3

1 113 10 14 88 51 23 16 110 10 19 94 75 7
2 133 12 20 112 75 13 17 95 7 18 89 71 5
3 110 7 14 90 75 22 18 136 8 17 112 93 12
4 113 11 18 95 76 2 19 88 7 14 81 66 5
5 145 11 21 130 107 35 20 99 7 17 89 72 10
6 118 9 15 104 57 33 21 107 7 19 94 68 22
7 91 7 16 83 69 7 22 126 9 21 104 85 26
8 83 8 14 71 39 4 23 110 7 14 90 75 22
9 124 10 11 101 72 10 24 91 7 16 83 69 7
10 94 9 19 73 74 1 25 137 9 13 103 94 5
11 99 7 17 89 72 10 26 104 6 19 78 62 93
12 125 12 15 106 90 10 27 126 9 21 104 85 26
13 88 7 14 81 66 5 28 125 12 15 106 90 10
14 136 8 17 112 93 12 29 96 9 15 89 71 2
15 119 11 22 104 86 9 30 131 11 19 106 85 7



3456	 Z. Moghaddas et al.

1 3

Appendix 1

Proof of Theorem 1  The following items need to verify:

a.	 TIDEA
HRS

satisfies the mentioned axioms.
b.	 If T̂  is an arbitrary technology set that satisfies the same axioms, B1 − B4 , then 

it contains TIDEA
HRS

 . The first step is straightforward and a trivial verification points 
that TIDEA

HRS

	   involves the observed DMUs (B1) , satisfies natural convexity (B2) , natural 
disposability (B3) , and natural selective proportionality (B4) . Regarding the sec-
ond step, consider integer-valued data and assume that T̂ ⊆ Zm+s

+
 be any arbitrary 

technology set that satisfies B1 − B4 . Let T = conv
(
T̂
)
⊆ Rm+s

+
 be the convex 

hull of T̂  . According to Kuosmanen, Kazemi Matin (2009), T  is still contains 
the observations and satisfies the continues versions of B2 − B4 . As it is shown 
in Podinovski et al. (2014), the production set T  is the smallest set that satisfies 
the mentioned axioms B1 − B4 . So, we have THRS ⊆ T  . Now, by restricting the 
vectors to the integer valued points, we obtain

	   The left and right sides of (6) can be considered as TIDEA
HRS

 and T̂  , respectively. 
This concludes that TIDEA

HRS
⊆ �T  , which completes the proof.

Appendix 2

Generalized model: In Sect. 4, we assumed that all input and output data can only take 
integer values. Now, we extend the proposed model to the case in which some inputs 
and outputs are real-valued. Suppose the input–output vector (x, y) is partitioned as 
( xIP, xINP, xP, xNP, yIP, yINP, yP, yNP ) in which:

(14)THRS ∩ Zm+s
+

⊆ T ∩ Zm+s
+

xIP are integer − valued proportional input m1 − vector,

xINP are integer − valued nonproportional input m2 − vector,

xP are real − valued proportional input m3 − vector,

xNP are real − valued nonproportional input m4 − vector,

yIPare integer − valued proportional output s1 − vector,

yINP are integer − valued nonproportional output s2 − vector,
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The following input-oriented MILP model is proposed to analyze the relative effi-
ciency of DMUk:

It should be noted that m1 + m2 + m3 + m4 = m and s1 + s2 + s3 + s4 = s and m 
and s are respectively the total number of inputs and outputs.

yPare real − valued proportional output s3 − vector,

yNP are real − valued nonproportional output s4 − vector,

min
𝜆,𝜇,𝜈,

⌣
x

𝜃

s.t.

n∑
j=1

�
𝜆j + 𝜇j − 𝜈j

�
xIP
i1j

≤
⌣

x
IP

i1k
i1 = 1, ...,m1

⌣

x
IP

i1k
≤ 𝜃xIP

i1k
i1 = 1, ...,m1

n∑
j=1

𝜆jx
INP
i2j

≤
⌣

x
INP

i2k
i2 = 1, ...,m2

⌣

x
INP

i2k
≤ 𝜃xINP

i2k
i2 = 1, ...,m2

n∑
j=1

�
𝜆j + 𝜇j − 𝜈j

�
xP
i1j

≤ 𝜃xP
i1k

i3 = 1, ...,m3

n∑
j=1

𝜆jx
NP
i2j

≤ 𝜃xNP
i2k

i4 = 1, ...,m4

n∑
j=1

�
𝜆j + 𝜇j − 𝜈j

�
yIP
r1j

≥ yIP
r1k

r1 = 1, ..., s1

n∑
j=1

�
𝜆j − 𝜈j

�
yINP
r2j

≥ yINP
r2k

r2 = 1, ..., s2

n∑
j=1

�
𝜆j + 𝜇j − 𝜈j

�
yP
r1j

≥ yP
r1k

r3 = 1, ..., s3

n∑
j=1

�
𝜆j − 𝜈j

�
yNP
r2j

≥ yNP
r2k

r4 = 1, ..., s4

n�
j=1

𝜆j = 1

⌣

x
IP

i1k
∈ Z+ i1 = 1, ...,m1

⌣

x
NIP

i2k
∈ Z+ i2 = 1, ...,m2

𝜆j − 𝜈j ≥ 0,𝜇j ≥ 0, 𝜈j ≥ 0 j = 1, ..., n
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