Skip to main content

Advertisement

Log in

Selective proportionality and integer-valued data in DEA: an application to performance evaluation of high schools

  • Original Paper
  • Published:
Operational Research Aims and scope Submit manuscript

Abstract

Conventional data envelopment analysis (DEA) models are often extended for constant or variable returns to scale assumptions based on the under-investigated technology. It is assumed that all inputs and outputs are real-valued data. However, in many practical applications, proportionality or convexity axioms require to be modified. This study attempts to further expand upon the hybrid returns to scale DEA models in the presence of integer-valued input and output data. We refine the previous axioms to introduce a new minimal extrapolation technology set. Moreover, we formulate a couple of mixed-integer linear programming models for efficiency evaluation and target setting. An empirical application on 30 high schools in Iran is provided to validate the proposed approach. The data analysis, including efficiency evaluations along with providing benchmark units, is also performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. http://olympiad.sanjesh.org/En/Default.aspx.

  2. https://en.wikipedia.org/wiki/Education_in_Iran.

  3. http://medu.ir/fa/.

  4. https://www.msrt.ir/en.

  5. * http://www.behdasht.gov.ir/page/en.

References

  • Afsharian M, Ahn H, Alirezaee M (2015) Developing selective proportionality on the FDH models: new insight on the proportionality axiom. Int J Inf Decis Sci 7(2):99

    Google Scholar 

  • Alirezaee MR, Boloori F (2012) Proportional production trade-offs in DEA. Asia-Pac J Oper Res 29(06):1250035

    Article  Google Scholar 

  • Banker RD, Charnes A, Cooper WW (1984) Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manage Sci 30(9):1078–1092

    Article  Google Scholar 

  • Begičević N, Divjak B, Hunjak T (2010) Decision-making on prioritization of projects in higher education institutions using the analytic network process approach. CEJOR 18(3):341–364

    Article  Google Scholar 

  • Čampelj B, Karnet I, Brodnik A, Jereb E, Rajkovič U (2018) A multi-attribute modelling approach to evaluate the efficient implementation of ICT in schools. Centr Eur J Oper Res 27(3):851–62

    Article  Google Scholar 

  • Charnes A, Cooper WW, Rhodes E (1978) Measuring the efficiency of decision making units. Eur J Oper Res 2:429–444

    Article  Google Scholar 

  • Charnes A, Cooper WW, Rhodes E (1979) Measuring the efficiency of decision-making units. Eur J Oper Res 3(4):339

    Article  Google Scholar 

  • Cherchye L, De Witte K, Perelman S (2019) A unified productivity-performance approach applied to secondary schools. J Oper Res Soc 70(9):1522–37

    Article  Google Scholar 

  • Cook WD, Zhu J (2011) Multiple variable proportionality in data envelopment analysis. Oper Res 59(4):1024–1032

    Article  Google Scholar 

  • Cooper WW, Seiford LM, Tone, K (2006) Introduction to data envelopment analysis and its uses: With DEA-solver software and references. Introduction to data envelopment analysis and its uses: with DEA-solver software and references

  • Cordero JM, Prior D, Simancas R (2016) A comparison of public and private schools in Spain using robust nonparametric frontier methods. CEJOR 24(3):659–680

    Article  Google Scholar 

  • Farrell MJ (1957) The measurement of productive efficiency. J R Stat Soc Ser A Gener 120(3):253–290

    Article  Google Scholar 

  • Ferreira D, Marques R (2020) A step forward on order-a robust nonparametric method: inclusion of weight restrictions, convexity, and non-variable returns to scale. Oper Res Int J 20:1011–1046

    Article  Google Scholar 

  • Ferreira D, Nunes A, Marques R (2018) Economies of scope in the health sector: the case of Portuguese hospitals. Eur J Oper Res 266(2):716–735

    Article  Google Scholar 

  • Huang C-W, Chiu Y-H, Ting C-T, Lin C-H (2012) Applying a hybrid DEA model to evaluate the influence of marketing activities to operational efficiency on Taiwan’s international tourist hotels. J Oper Res Soc 63(4):549–560

    Article  Google Scholar 

  • Jablonsky J (2016) Efficiency analysis in multi-period systems: an application to performance evaluation in Czech higher education. CEJOR 24(2):283–296

    Article  Google Scholar 

  • Jie T, Yan Q, Xu W (2015) A technical note on “A note on integer-valued radial model in DEA.” Comput Ind Eng 87:308–310

    Article  Google Scholar 

  • Kadoić N, Ređep NB, Divjak B (2018) A new method for strategic decision-making in higher education. CEJOR 26(3):611–628

    Article  Google Scholar 

  • Kazemi Matin R, Emrouznejad A (2011) An integer-valued data envelopment analysis model with bounded outputs. Int Trans Oper Res 18(6):741–749

    Article  Google Scholar 

  • Kazemi Matin R, Kuosmanen T (2009) Theory of integer-valued data envelopment analysis under alternative returns to scale axioms. Omega 37(5):988–995

    Article  Google Scholar 

  • Kuosmanen T, Kazemi Matin R (2009) Theory of integer-valued data envelopment analysis. Eur J Oper Res 192(2):658–667

    Article  Google Scholar 

  • Kuosmanen T, Keshvari A, Kazemi Matin R (2015) Discrete and integer-valued inputs and outputs in data envelopment analysis. In: Zhu J (ed) Handbook on data envelopment analysis. Springer, Berlin

    Google Scholar 

  • Lozano S, Villa G (2006) Data envelopment analysis of integer-valued inputs and outputs. Comput Oper Res 33(10):3004–3014

    Article  Google Scholar 

  • Podinovski VV (2004) Bridging the gap between the constant and variable returns-to-scale models: selective proportionality in data envelopment analysis. J Oper Res Soc 55(3):265–276

    Article  Google Scholar 

  • Podinovski VV (2009) Production technologies based on combined proportionality assumptions. J Prod Anal 32(1):21–26

    Article  Google Scholar 

  • Podinovski VV, Wan Husain WR (2017) The hybrid returns-to-scale model and its extension by production trade-offs: an application to the efficiency assessment of public universities in Malaysia. Ann Oper Res 250(1):65–84

    Article  Google Scholar 

  • Podinovski VV, Ismail I, Bouzdine-Chameeva T, Zhang W (2014) Combining the assumptions of variable and constant returns to scale in the efficiency evaluation of secondary schools. Eur J Oper Res 239(2):504–513

    Article  Google Scholar 

  • Wu L, O’Brien GC (2010) Radial data envelopment analysis models with mixed orientation of input and output. Int Trans Oper Res 17(2):287–302

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful the ORIJ Editorial Office to ensure timely revision process and their flexible approach during the COVID-19 pandemic. The authors are also grateful for constructive and helpful comments and suggestions made by anonymous referees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Kazemi Matin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Proof of Theorem 1

The following items need to verify:

  1. a.

    \({T}_{HRS}^{IDEA}\)satisfies the mentioned axioms.

  2. b.

    If \(\hat{T}\) is an arbitrary technology set that satisfies the same axioms, \({\varvec{B}}1 - {\varvec{B}}4\), then it contains \(T_{HRS}^{IDEA}\). The first step is straightforward and a trivial verification points that \(T_{HRS}^{IDEA}\)

    involves the observed DMUs \(\left( {{\varvec{B}}1} \right)\), satisfies natural convexity \(\left( {{\varvec{B}}2} \right)\), natural disposability \(\left( {{\varvec{B}}3} \right)\), and natural selective proportionality \(\left( {{\varvec{B}}4} \right)\). Regarding the second step, consider integer-valued data and assume that \(\hat{T} \subseteq Z_{ + }^{m + s}\) be any arbitrary technology set that satisfies \({\varvec{B}}1 - {\varvec{B}}4\). Let \(T = {\text{conv}}\left( {\hat{T}} \right) \subseteq R_{ + }^{m + s}\) be the convex hull of \(\hat{T}\). According to Kuosmanen, Kazemi Matin (2009), \(T\) is still contains the observations and satisfies the continues versions of \({\varvec{B}}2 - {\varvec{B}}4\). As it is shown in Podinovski et al. (2014), the production set \(T\) is the smallest set that satisfies the mentioned axioms \({\varvec{B}}1 - {\varvec{B}}4\). So, we have \(T_{HRS} \subseteq T\). Now, by restricting the vectors to the integer valued points, we obtain

    $$T_{HRS} \cap Z_{ + }^{m + s} \subseteq T \cap Z_{ + }^{m + s}$$
    (14)

    The left and right sides of (6) can be considered as \(T_{HRS}^{IDEA}\) and \(\widehat{T}\), respectively. This concludes that \({T}_{HRS}^{IDEA}\subseteq \widehat{T}\), which completes the proof.

Appendix 2

Generalized model: In Sect. 4, we assumed that all input and output data can only take integer values. Now, we extend the proposed model to the case in which some inputs and outputs are real-valued. Suppose the input–output vector (x, y) is partitioned as (\({x}^{IP}, {x}^{INP}, {x}^{P}, {x}^{NP}, {y}^{IP}, {y}^{INP}, {y}^{P}, {y}^{NP}\)) in which:

  • $$x_{{}}^{{IP}} {\text{ are integer}} - {\text{valued proportional input m}}_{1} {\text{ }} - {\text{ vector}},$$
  • $$x_{{}}^{{INP}} {\text{ are integer }} - {\text{ valued nonproportional input m}}_{2} {\text{ }} - {\text{ vector,}}$$
  • $$x_{{}}^{P} {\text{ are real }} - {\text{ valued proportional input m}}_{3} {\text{ }} - {\text{ vector}},$$
  • $$x^{{NP}} {\text{ are real }} - {\text{ valued nonproportional input }}m_{4} {\text{ }} - {\text{ vector}},$$
  • $$y^{{IP}} {\text{are integer }} - {\text{ valued proportional output s}}_{1} {\text{ }} - {\text{vector}},$$
  • $$y_{{}}^{{INP}} {\text{ are integer}} - {\text{ valued nonproportional output s}}_{2} {\text{ }} - {\text{ vecto}}r,$$
  • $$y^{P} {\text{are real }} - {\text{ valued proportional output s}}_{3} {\text{ }} - {\text{ vector,}}$$
  • $$y_{{}}^{{NP}} {\text{ are real }} - {\text{ valued nonproportional output s}}_{4} - {\text{ vector,}}$$

The following input-oriented MILP model is proposed to analyze the relative efficiency of \({DMU}_{\mathrm{k}}\):

$$\begin{gathered} \mathop {{\text{min}}}\limits_{{\lambda ,\mu ,\nu ,\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{x} }} \theta \hfill \\ {\text{s}}.{\text{t}}. \hfill \\ \begin{array}{*{20}c} {\mathop \sum \limits_{j = 1}^{n} \left( {\lambda_{j} + \mu_{j} - \nu_{j} } \right)x_{{i_{1} j}}^{IP} \le \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{x}_{{i_{1} k}}^{IP} } & {i_{1} = 1,...,m_{1} } \\ \end{array} \hfill \\ \begin{array}{*{20}c} {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{x}_{{i_{1} k}}^{IP} \le \theta x_{{i_{1} k}}^{IP} } & {i_{1} = 1,...,m_{1} } \\ \end{array} \hfill \\ \begin{array}{*{20}c} {\sum\limits_{j = 1}^{n} {\lambda_{j} x_{{i_{2} j}}^{INP} \le \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{x}_{{i_{2} k}}^{INP} } } & {i_{2} = 1,...,m_{2} } \\ \end{array} \hfill \\ \begin{array}{*{20}c} {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{x}_{{i_{2} k}}^{INP} \le \theta x_{{i_{2} k}}^{INP} } & {i_{2} = 1,...,m_{2} } \\ \end{array} \hfill \\ \begin{array}{*{20}c} {\mathop \sum \limits_{j = 1}^{n} \left( {\lambda_{j} + \mu_{j} - \nu_{j} } \right)x_{{i_{1} j}}^{P} \le \theta x_{{i_{1} k}}^{P} } & {i_{3} = 1,...,m_{3} } \\ \end{array} \hfill \\ \begin{array}{*{20}c} {\mathop \sum \limits_{j = 1}^{n} \lambda_{j} x_{{i_{2} j}}^{NP} \le \theta x_{{i_{2} k}}^{NP} } & {i_{4} = 1,...,m_{4} } \\ \end{array} \hfill \\ \begin{array}{*{20}c} {\mathop \sum \limits_{j = 1}^{n} \left( {\lambda_{j} + \mu_{j} - \nu_{j} } \right)y_{{r_{1} j}}^{IP} \ge y_{{r_{1} k}}^{IP} } & {r_{1} = 1,...,s_{1} } \\ \end{array} \hfill \\ \begin{array}{*{20}c} {\mathop \sum \limits_{j = 1}^{n} \left( {\lambda_{j} - \nu_{j} } \right)y_{{r_{2} j}}^{INP} \ge y_{{r_{2} k}}^{INP} } & {r_{2} = 1,...,s_{2} } \\ \end{array} \hfill \\ \begin{array}{*{20}c} {\mathop \sum \limits_{j = 1}^{n} \left( {\lambda_{j} + \mu_{j} - \nu_{j} } \right)y_{{r_{1} j}}^{P} \ge y_{{r_{1} k}}^{P} } & {r_{3} = 1,...,s_{3} } \\ \end{array} \hfill \\ \begin{array}{*{20}c} {\mathop \sum \limits_{j = 1}^{n} \left( {\lambda_{j} - \nu_{j} } \right)y_{{r_{2} j}}^{NP} \ge y_{{r_{2} k}}^{NP} } & {r_{4} = 1,...,s_{4} } \\ \end{array} \hfill \\ \sum\limits_{j = 1}^{n} {\lambda_{j} } = 1 \hfill \\ \begin{array}{*{20}c} {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{x}_{{i_{1} k}}^{IP} \in Z_{ + } { }} & {i_{1} = 1,...,m_{1} } \\ \end{array} \hfill \\ \begin{array}{*{20}c} {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{x}_{{i_{2} k}}^{NIP} \in Z_{ + } } & {i_{2} = 1,...,m_{2} } \\ \end{array} \hfill \\ \begin{array}{*{20}c} {\lambda_{j} - \nu_{j} \ge 0,{ }\mu_{j} \ge 0,{ }\nu_{j} \ge 0} & {j = 1,...,n} \\ \end{array} \hfill \\ \end{gathered}$$

It should be noted that \({m}_{1}+{m}_{2}+{m}_{3}+{m}_{4}=m\) and \({s}_{1}+{s}_{2}+{s}_{3}+{s}_{4}=s\) and m and s are respectively the total number of inputs and outputs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moghaddas, Z., Amirteimoori, A. & Kazemi Matin, R. Selective proportionality and integer-valued data in DEA: an application to performance evaluation of high schools. Oper Res Int J 22, 3435–3459 (2022). https://doi.org/10.1007/s12351-022-00692-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12351-022-00692-3

Keywords