Skip to main content
Log in

Vehicle routing problem under safe separation distance for multiple unmanned aerial vehicle operation

  • Original Paper
  • Published:
Operational Research Aims and scope Submit manuscript

Abstract

In this work, we present a variant of the vehicle routing problem for multiple unmanned aerial vehicle operation. The problem was described as a multi-depot vehicle routing problem with separation distance constraints, and two mathematical models were developed to find the best routes under capacity, maximum traveling time, and intervehicle separation constraints. In the first model, the separation distance constraint was proposed using a discrete time window based on previous studies, while the second model restricts the relative difference of departure time between every two arcs within the safety distance. Although the second model was designed using the mixed-integer linear programming model, finding acceptable solutions within a limited computation time was a challenge. Therefore, a decomposition heuristic, which divides the second model into a routing step followed by a scheduling step, and a hybrid tabu search algorithm with constructive initial solution generation were suggested. The performance of the suggested algorithms was evaluated for randomly generated graphs in two-dimensional space, and computational experiments showed that the proposed algorithms can be applied to practical cases with enhanced computational efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bektas T (2006) The multiple traveling salesman problem: an overview of formulations and solution procedures. Omega 34(3):209–219

    Article  Google Scholar 

  • Berbeglia G, Cordeau JF, Gribkovskaia I, Laporte G (2007) Static pickup and delivery problems: a classification scheme and survey. TOP 15(1):1–31

    Article  Google Scholar 

  • Calvet L, Wang D, Juan A, Bové L (2019) Solving the multidepot vehicle routing problem with limited depot capacity and stochastic demands. Int Trans Oper Res 26(2):458–484

    Article  Google Scholar 

  • Christofides N, Mingozzi A, Toth P (1981) Exact algorithms for the vehicle routing problem, based on spanning tree and shortest path relaxations. Math Program 20(1):255–282

    Article  Google Scholar 

  • Contardo C, Martinelli R (2014) A new exact algorithm for the multi-depot vehicle routing problem under capacity and route length constraints. Discret Optim 12:129–146

    Article  Google Scholar 

  • Cordeau JF, Maischberger M (2012) A parallel iterated tabu search heuristic for vehicle routing problems. Comput Oper Res 39(9):2033–2050

    Article  Google Scholar 

  • Cordeau JF, Gendreau M, Laporte G (1997) A tabu search heuristic for periodic and multi‐depot vehicle routing problems. Netw Int J 30(2):105–119

    Google Scholar 

  • Crevier B, Cordeau JF, Laporte G (2007) The multi-depot vehicle routing problem with inter-depot routes. Eur J Oper Res 176(2):756–773

    Article  Google Scholar 

  • Escobar JW, Linfati R, Toth P, Baldoquin MG (2014) A hybrid granular tabu search algorithm for the multi-depot vehicle routing problem. J Heuristics 20(5):483–509

    Article  Google Scholar 

  • Gendreau M, Hertz A, Laporte G (1994) A tabu search heuristic for the vehicle routing problem. Manag Sci 40(10):1276–1290

    Article  Google Scholar 

  • Glover F (1986) Future paths for integer programming and links to artificial intelligence. Comput Oper Res 13(5):533–549

    Article  Google Scholar 

  • Habib D, Jamal H, Khan SA (2013) Employing multiple unmanned aerial vehicles for co-operative path planning. Int J Adv Rob Syst 10(5):235

    Article  Google Scholar 

  • Helsgaun K (2000) An effective implementation of the Lin-Kernighan traveling salesman heuristic. Eur J Oper Res 126(1):106–130

    Article  Google Scholar 

  • Jiang J, Ng KM (2011) Priority-based routing of unmanned combat aerial vehicles. In: 2011 Defense Science Research Conference and Expo, pp 1–4. IEEE

  • Kumar SN, Panneerselvam R (2012) A survey on the vehicle routing problem and its variants. Intell Inf Manag 4(3):66–74

    Google Scholar 

  • Lin S, Kernighan BW (1973) An effective heuristic algorithm for the traveling-salesman problem. Oper Res 21(2):498–516

    Article  Google Scholar 

  • Otto A, Agatz N, Campbell J, Golden B, Pesch E (2018) Optimization approaches for civil applications of unmanned aerial vehicles (UAVs) or aerial drones: a survey. Networks 72(4):411–458

    Article  Google Scholar 

  • Pallottino L, Feron EM, Bicchi A (2002) Conflict resolution problems for air traffic management systems solved with mixed integer programming. IEEE Trans Intell Transp Syst 3(1):3–11

    Article  Google Scholar 

  • Richards A, How JP (2002) Aircraft trajectory planning with collision avoidance using mixed integer linear programming. In: IEEE Proceedings of the 2002 American Control Conference 3:1936–1941

  • Richards A, Schouwenaars T, How JP, Feron E (2002) Spacecraft trajectory planning with avoidance constraints using mixed-integer linear programming. J Guid Control Dyn 25(4):755–764

    Article  Google Scholar 

  • Ropke S, Cordeau JF (2009) Branch and cut and price for the pickup and delivery problem with time windows. Transp Sci 43(3):267–286

    Article  Google Scholar 

  • Sadati MEH, Aksen D, Aras N (2020) The r-interdiction selective multi-depot vehicle routing problem. Int Trans Oper Res 27(2):835–866

    Article  Google Scholar 

  • Schouwenaars T, De Moor B, Feron E, How J (2001) Mixed integer programming for multi-vehicle path planning. In: 2001 European Controlled Conference (ECC), pp 2603–2608. IEEE

  • Sharma N, Monika M (2015) A literature survey on multi-depot vehicle routing problem. Int J Res Dev 3(4):1752–1757

    Google Scholar 

  • Subramanian A, Uchoa E, Ochi LS (2013) A hybrid algorithm for a class of vehicle routing problems. Comput Oper Res 40(10):2519–2531

    Article  Google Scholar 

  • Taillard É (1993) Parallel iterative search methods for vehicle routing problems. Networks 23(8):661–673

    Article  Google Scholar 

  • Toth P, Vigo D (eds) (2002) The vehicle routing problem. Society for Industrial and Applied Mathematics

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun Seop Uhm.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Proof: \({{\varvec{H}}}_{{\varvec{i}}{\varvec{j}}{{\varvec{i}}}^{\boldsymbol{^{\prime}}}{{\varvec{j}}}^{\boldsymbol{^{\prime}}}}\) is a convex set in \({\mathbb{R}}^{+}\)

Let \(\delta\) be the departure time difference between arcs \(\left(i,j\right)\) and \(\left({i}{^{\prime}},{j}{^{\prime}}\right)\), which is assumed to be in \({\mathbb{R}}^{+}\). Also, we assume that the departure time of arc \(\left(i,j\right)\) is 0.

  1. 1)

    Time range

    Let \({T}_{ij{i}{^{\prime}}{j}{^{\prime}}}\left(\delta \right)\in T\) be the time range in which both vehicles exist on the arcs concurrently when the vehicle on arc \(\left({i}{^{\prime}},{j}{^{\prime}}\right)\) depart from node \({i}{^{\prime}}\) at \(\delta\). If one vehicle on arc \(\left(i,j\right)\) departs from node \(i\) at time \(0\), it completes the service at node \(j\) at time \(\left({C}_{ij}+{S}_{j}\right)\), and the other vehicle on arc \(\left({i}{^{\prime}},{j}{^{\prime}}\right)\) starts and finishes at time \(\delta\) and \(\left({C}_{{i}{^{\prime}}{j}{^{\prime}}}+{S}_{{j}{^{\prime}}}+\delta \right)\), respectively. Equation (A1) is the definition of \({T}_{ij{i}{^{\prime}}{j}{^{\prime}}}\left(\delta \right)\) for every \(\left\{\left(i,j\right),\left({i}{^{\prime}},{j}{^{\prime}}\right)\right\}\in P\).

    $${T}_{ij{i}{^{\prime}}{j}{^{\prime}}}\left(\delta \right)=\left\{t |t\in T, \delta \le t\le \mathrm{min}\left({C}_{ij}+{S}_{j},{C}_{{i}{^{\prime}}{j}{^{\prime}}}+{S}_{{j}{^{\prime}}}+\delta \right)\right\}$$
    (A1)
  2. 2)

    Euclidean distance

    The 2D locations of the vehicles on arcs \(\left(i,j\right)\) and \(\left({i}{^{\prime}},{j}{^{\prime}}\right)\) at time \(t\in {T}_{ij{i}{^{\prime}}{j}{^{\prime}}}\left(\delta \right)\) are suggested to be (\({L}_{ij}^{X}\left(\delta ,t\right),{L}_{ij}^{Y}\left(\delta ,t\right),{L}_{ij}^{Z}\left(\delta ,t\right)\)) and (\({L}_{{i}{^{\prime}}{j}{^{\prime}}}^{X}\left(\delta ,t\right),{L}_{{i}{^{\prime}}{j}{^{\prime}}}^{Y}\left(\delta ,t\right),{L}_{{i}{^{\prime}}{j}{^{\prime}}}^{Z}\left(\delta ,t\right)\)) in Eqs. (A2) and (A3), respectively. Each location function is divided into two cases since it is assumed that every vehicle stays at the customer node during its service time.

    $$\left({L}_{ij}^{X}\left(\delta ,t\right),{L}_{ij}^{Y}\left(\delta ,t\right),{L}_{ij}^{Z}\left(\delta ,t\right)\right)=\left\{\begin{array}{cc}\left({L}_{i}^{X}+{V}_{ij}^{X}t,{L}_{i}^{Y}+{V}_{ij}^{Y}t,{L}_{i}^{Z}+{V}_{ij}^{Z}t\right)& if \, t\le {C}_{ij}\\ \left({L}_{j}^{X}, {L}_{j}^{Y}, {L}_{j}^{Z}\right)& o.w.\end{array}\right.$$
    (A2)
    $$\left({L}_{{i}{^{\prime}}{j}{^{\prime}}}^{X}\left(\delta ,t\right),{L}_{{i}{^{\prime}}{j}{^{\prime}}}^{Y}\left(\delta ,t\right),{L}_{{i}{^{\prime}}{j}{^{\prime}}}^{Z}\left(\delta ,t\right)\right)=\left\{\begin{array}{cc}\left({L}_{{i}{^{\prime}}}^{X}+{V}_{{i}{^{\prime}}{j}{^{\prime}}}^{X}\left(t-\delta \right),{L}_{{i}{^{\prime}}}^{Y}+{V}_{{i}{^{\prime}}{j}{^{\prime}}}^{Y}\left(t-\delta \right),{L}_{{i}{^{\prime}}}^{Z}+{V}_{{i}{^{\prime}}{j}{^{\prime}}}^{Z}\left(t-\delta \right)\right)& if \, t-\delta \le {C}_{{i}{^{\prime}}{j}{^{\prime}}}\\ \left({L}_{{j}{^{\prime}}}^{X}, {L}_{{j}{^{\prime}}}^{Y}, {L}_{{j}{^{\prime}}}^{Z}\right)& o.w.\end{array}\right.$$
    (A3)

    The Euclidean distance between two vehicles at every time \(t\in {T}_{ij{i}{^{\prime}}{j}{^{\prime}}}\left(\delta \right)\) is denoted by \({E}_{ij{i}{^{\prime}}{j}{^{\prime}}}\left(\delta ,t\right)={\Vert \left({L}_{ij}^{X}\left(\delta ,t\right),{L}_{ij}^{Y}\left(\delta ,t\right),{L}_{ij}^{Z}\left(\delta ,t\right)\right)-\left({L}_{{i}{^{\prime}}{j}{^{\prime}}}^{X}\left(\delta ,t\right),{L}_{{i}{^{\prime}}{j}{^{\prime}}}^{Y}\left(\delta ,t\right),{L}_{{i}^{{\prime}}{j}{^{\prime}}}^{Z}\left(\delta ,t\right)\right)\Vert }_{2}\), and Eq. (A4) shows the details of \({E}_{ij{i}{^{\prime}}{j}{^{\prime}}}\left(\delta ,t\right)\) under the consideration of staying for service at the end node on each arc.

    $${E}_{ij{i}{^{\prime}}{j}{^{\prime}}}{\left(\delta ,t\right)}^{2}= \left\{\begin{array}{l}\begin{array}{ll}{\left\{{L}_{i}^{X}+{V}_{ij}^{X}t-{L}_{{i}{^{\prime}}}^{X}-{V}_{{i}{^{\prime}}{j}{^{\prime}}}^{X}\left(t-\delta \right)\right\}}^{2}+{\left\{{L}_{i}^{Y}+{V}_{ij}^{Y}t-{L}_{{i}{^{\prime}}}^{Y}-{V}_{{i}{^{\prime}}{j}{^{\prime}}}^{Y}\left(t-\delta \right)\right\}}^{2}\\ \quad+{\left\{{L}_{i}^{Z}+{V}_{ij}^{Z}t-{L}_{{i}{^{\prime}}}^{Z}-{V}_{{i}{^{\prime}}{j}{^{\prime}}}^{Z}\left(t-\delta \right)\right\}}^{2}\quad \mathrm{if} \, t < \mathrm{min}\left({C}_{ij},{C}_{{i}{^{\prime}}{j}{^{\prime}}}+\delta \right)\\ {\left\{{L}_{j}^{X}-{L}_{{i}{^{\prime}}}^{X}-{V}_{{i}{^{\prime}}{j}{^{\prime}}}^{X}\left(t-\delta \right)\right\}}^{2}+{\left\{{L}_{j}^{Y}-{L}_{{i}{^{\prime}}}^{Y}-{V}_{{i}{^{\prime}}{j}{^{\prime}}}^{Y}\left(t-\delta \right)\right\}}^{2}\\ \quad+{\left\{{L}_{j}^{Z}-{L}_{{i}{^{\prime}}}^{Z}-{V}_{{i}{^{\prime}}{j}{^{\prime}}}^{Z}\left(t-\delta \right)\right\}}^{2}\quad \mathrm{if} \, {C}_{ij}\le t < {C}_{{i}{^{\prime}}{j}{^{\prime}}}+\delta \end{array}\\ \begin{array}{ll}{\left\{{L}_{i}^{X}+{V}_{ij}^{X}t-{L}_{{j}{^{\prime}}}^{X}\right\}}^{2}+{\left\{{L}_{i}^{Y}+{V}_{ij}^{Y}t-{L}_{{j}{^{\prime}}}^{Y}\right\}}^{2}\\ \quad+{\left\{{L}_{i}^{Z}+{V}_{ij}^{Z}t-{L}_{{j}{^{\prime}}}^{Z}\right\}}^{2}\quad \mathrm{if} \, {C}_{{i}{^{\prime}}{j}{^{\prime}}}+\delta \le t<{C}_{ij}\\ {\left\{{L}_{J}^{X}-{L}_{{j}{^{\prime}}}^{X}\right\}}^{2}+{\left\{{L}_{j}^{Y}-{L}_{{j}{^{\prime}}}^{Y}\right\}}^{2}\\ \quad+{\left\{{L}_{j}^{Z}-{L}_{{j}{^{\prime}}}^{Z}\right\}}^{2}\quad \mathrm{if} \mathrm{max}\left({C}_{ij},{C}_{{i}{^{\prime}}{j}{^{\prime}}}+\delta \right)\le t\end{array}\end{array}\right.$$
    (A4)
  3. 3)

    Infeasible range of the departure time difference

    The departure time difference \(\delta\) is in \({H}_{ij{i}{^{\prime}}{j}{^{\prime}}}\) if there exists a time \(t\in {T}_{ij{i}{^{\prime}}{j}^{{\prime}}}\left(\delta \right)\) where \({E}_{ij{i}{^{\prime}}{j}{^{\prime}}}\left(\delta ,t\right)\) is less than the safety distance, \(B\). Equation (A5) below is the definition of \({H}_{ij{i}{^{\prime}}{j}{^{\prime}}}\), which is the union of partial infeasible ranges:

    $${H}_{ij{i}{^{\prime}}{j}{^{\prime}}}=\left\{\delta | {E}_{ij{i}{^{\prime}}{j}{^{\prime}}}{\left(\delta ,*\right)}^{2}=\underset{t\in {T}_{\mathit{ij}{i}{^{\prime}}{j}{^{\prime}}}\left(\delta \right)}{\mathrm{min}}\left\{{E}_{ijij}{\left(\delta ,t\right)}^{2}\right\}<{B}^{2}\right\}$$
    $$={H}_{ij{i}{^{\prime}}{j}{^{\prime}}}^{\left(1\right)}\cup {H}_{ij{i}{^{\prime}}{j}{^{\prime}}}^{\left(2\right)}\cup {H}_{ij{i}{^{\prime}}{j}{^{\prime}}}^{\left(3\right)}\cup {H}_{ij{i}{^{\prime}}{j}{^{\prime}}}^{\left(4\right)}$$
    (A5)
    $${H}_{ij{i}{^{\prime}}{j}{^{\prime}}}^{\left(1\right)}=\left\{\delta | {E}_{ij{i}{^{\prime}}{j}{^{\prime}}}^{\left(1\right)}{\left(\delta ,*\right)}^{2}=\underset{\delta \le t<\mathrm{min}\left({C}_{\mathit{ij}},{C}_{{i}{^{\prime}}{j}{^{\prime}}}+\delta \right)}{\mathrm{min}}\left\{{E}_{ijij}{\left(\delta ,t\right)}^{2}\right\}<{B}^{2}\right\}$$
    (A6)
    $${H}_{ij{i}^{{\prime}}{j}{^{\prime}}}^{\left(2\right)}=\left\{\delta | {E}_{ij{i}{^{\prime}}{j}{^{\prime}}}^{\left(2\right)}{\left(\delta ,*\right)}^{2}=\underset{{C}_{\mathit{ij}}\le t<{C}_{{i}{^{\prime}}{j}{^{\prime}}}+\delta }{\mathrm{min}}\left\{{E}_{ijij}{\left(\delta ,t\right)}^{2}\right\}<{B}^{2}\right\}$$
    (A7)
    $${H}_{ij{i}{^{\prime}}{j}{^{\prime}}}^{\left(3\right)}=\left\{\delta |{E}_{ij{i}{^{\prime}}{j}{^{\prime}}}^{\left(3\right)}{\left(\delta ,*\right)}^{2}=\underset{{C}_{{i}{^{\prime}}{j}{^{\prime}}}+\delta \le t<{C}_{\mathit{ij}}}{\mathrm{min}}\left\{{E}_{ijij}{\left(\delta ,t\right)}^{2}\right\}<{B}^{2}\right\}$$
    (A8)
    $${H}_{ij{i}{^{\prime}}{j}{^{\prime}}}^{\left(4\right)}=\left\{\delta | {E}_{ij{i}{^{\prime}}{j}{^{\prime}}}^{\left(4\right)}{\left(\delta ,*\right)}^{2}=\underset{\mathrm{max}\left({C}_{\mathit{ij}},{C}_{{i}{^{\prime}}{j}{^{\prime}}}+\delta \right)\le t<\mathrm{min}\left({C}_{\mathit{ij}}+{S}_{j},{C}_{{i}{^{\prime}}{j}{^{\prime}}}+{S}_{{j}{^{\prime}}}+\delta \right)}{\mathrm{min}}\left\{{E}_{ijij}{\left(\delta ,t\right)}^{2}\right\}<{B}^{2}\right\}$$
    (A9)
  4. 4)

    Convexity of the infeasible range

Since \({E}_{ijij}^{\left(n\right)}{\left(\delta ,t\right)}^{2}\) for every \(n\in \left\{\mathrm{1,2},\mathrm{3,4}\right\}\) in equations (A6)–(A9) is the polynomial function of \(\delta\) and \(t\), all partial infeasible ranges are a convex set of \(\delta\), denoted as \({H}_{ij{i}{^{\prime}}{j}{^{\prime}}}^{\left(n\right)}=\left({F}_{ij{i}{^{\prime}}{j}{^{\prime}}}^{\left(n\right)},{G}_{ij{i}{^{\prime}}{j}{^{\prime}}}^{\left(n\right)}\right)\) for every \(n\in \left\{\mathrm{1,2},\mathrm{3,4}\right\}\).

Let \({\Delta }_{ij{i}{^{\prime}}{j}{^{\prime}}}^{\left(n\right)}\) be the subset of \({H}_{ij{i}{^{\prime}}{j}{^{\prime}}}^{\left(n\right)}\) with a minimum value of the Euclidean distance function, \({\Delta }_{ij{i}{^{\prime}}{j}{^{\prime}}}^{\left(n\right)}=\underset{\delta }{\mathrm{argmin}}\left\{{E}_{ij{i}{^{\prime}}{j}{^{\prime}}}^{\left(n\right)}{\left(\delta ,*\right)}^{2} | \delta \in {H}_{ij{i}{^{\prime}}{j}{^{\prime}}}^{\left(n\right)}\right\}\), and \({\delta }_{\mathrm{min}}^{\left(n\right)}\) be the minimum value of \(\delta\) in \({\Delta }_{ij{i}{^{\prime}}{j}{^{\prime}}}^{\left(n\right)}\), \({\delta }_{\mathrm{min}}^{\left(n\right)}=\mathrm{min}\left\{{\Delta }_{ij{i}{^{\prime}}{j}{^{\prime}}}^{\left(n\right)}\right\},\mathrm{ for every }n\in \left\{\mathrm{1,2},\mathrm{3,4}\right\}\). Below Fig. A1, which is an illustration of \({\delta }_{\mathrm{min}}^{\left(2\right)}\), ensures that \({\delta }_{\mathrm{min}}^{\left(2\right)}\) is in \({H}_{ij{i}{^{\prime}}{j}{^{\prime}}}^{\left(1\right)}\) if both \({H}_{ij{i}{^{\prime}}{j}{^{\prime}}}^{\left(1\right)}\) and \({H}_{ij{i}{^{\prime}}{j}{^{\prime}}}^{\left(2\right)}\) are not empty sets. Since both \({H}_{ij{i}{^{\prime}}{j}{^{\prime}}}^{\left(1\right)}\) and \({H}_{ij{i}{^{\prime}}{j}{^{\prime}}}^{\left(2\right)}\) are convex sets, \({H}_{ij{i}{^{\prime}}{j}{^{\prime}}}^{\left(1\right)}\cup {H}_{ij{i}{^{\prime}}{j}{^{\prime}}}^{\left(2\right)}\) is also a convex set. It can be affirmed similarly that \({\delta }_{\mathrm{min}}^{\left(3\right)}\) and \({\delta }_{\mathrm{min}}^{\left(4\right)}\) are in \({H}_{ij{i}{^{\prime}}{j}{^{\prime}}}^{\left(1\right)}\); therefore, \({H}_{ij{i}{^{\prime}}{j}{^{\prime}}}={H}_{ij{i}{^{\prime}}{j}{^{\prime}}}^{\left(1\right)}\cup {H}_{ij{i}{^{\prime}}{j}{^{\prime}}}^{\left(2\right)}\cup {H}_{ij{i}{^{\prime}}{j}{^{\prime}}}^{\left(3\right)}\cup {H}_{ij{i}{^{\prime}}{j}{^{\prime}}}^{\left(4\right)}\) is a convex set of \(\delta\) in \({\mathbb{R}}^{+}\). ■

Fig. A1
figure 9

A brief illustration that \({\delta }_{\mathrm{min}}^{\left(2\right)}\) is in \({H}_{ij{i}{^{\prime}}{j}{^{\prime}}}^{\left(1\right)}\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uhm, H.S., Lee, Y.H. Vehicle routing problem under safe separation distance for multiple unmanned aerial vehicle operation. Oper Res Int J 22, 5107–5136 (2022). https://doi.org/10.1007/s12351-022-00701-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12351-022-00701-5

Keywords

Navigation