Skip to main content
Log in

Optimal strategies of social commerce platforms in the context of forwarding and bargaining

  • Original Paper
  • Published:
Operational Research Aims and scope Submit manuscript

Abstract

“Forwarding and bargaining” is a new marketing pattern in social commerce that fully utilizes consumers’ social relationships and offers an alternative for enterprises struggling with traditional e-commerce platforms. In this paper, we assume a Stackelberg game model between a social commerce platform and an e-commerce enterprise to investigate their strategy changes in four scenarios under the forwarding and bargaining context. Our results show that (1) platforms in the early-mid stage tend to adopt a subsidy strategy to obtain massive user and traffic benefits; (2) for enterprises operating high-quality but low-added-value products, it is unnecessary to join a developed social commerce platform; (3) platforms as direct beneficiaries can always gain more profits than can enterprises from increased traffic benefits; and (4) platforms desire to reduce the forwarding cost, whereas enterprises favour maintaining a higher one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

Download references

Acknowledgements

This work was supported by the National Office for Philosophy and Social Sciences under Grant 18BGL110 and Grant 20FGLB034; the Natural Science Foundation of Guangdong Province under Grant 2020A1515010830.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: YW, XC; Methodology: XC, RZ; Formal analysis and investigation: XC, RZ; Writing—original draft preparation: XC; Writing—review and editing: XC, YW, RZ; Supervision: YW.

Corresponding author

Correspondence to Yingliang Wu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1. Stackelberg stage-one solution

(1) When \(dm\ge 1-\frac{n}{N}\), the decision model of the enterprise is

$$\left\{ {\begin{array}{*{20}l} {p^{*} ,m^{*} = {\text{argmax}}_{p,m} Nd\left( {p - c - s} \right)} \hfill \\ {{\text{s.t.}}\,\,dm \ge 1 - \frac{n}{N},0 \le d \le 1,m \ge 0} \hfill \\ \end{array} } \right..$$

Then, we can compute the partial derivatives of \(q\) and \(m\) as

$$\left\{ {\begin{array}{*{20}l} {\frac{{\partial R_{M} }}{\partial p} = \frac{N}{q}\left( {q + c + s - mt - 2p} \right)} \hfill \\ {\frac{{\partial R_{M} }}{\partial m} = - \frac{{Nt\left( {p - c - s} \right)}}{q} < 0} \hfill \\ \end{array} } \right..$$

Therefore, the optimal solution is at \(dm=1-\frac{n}{N}\); thus, we obtain

$$\left\{ {\begin{array}{*{20}l} {p^{*} = \frac{q + c + s}{2} - \frac{{2qt\left( {N - n} \right)}}{{N\left( {q - c - s} \right)}}} \hfill \\ {m^{*} = \frac{{2q\left( {N - n} \right)}}{{N\left( {q - c - s} \right)}}} \hfill \\ {R_{M}^{*} = \frac{{N(q - c - s)^{2} }}{4q} - \left( {N - n} \right)t} \hfill \\ \end{array} } \right..$$

(2) When \(dm<1-\frac{n}{N}\), the decision model is

$$\left\{ {\begin{array}{*{20}l} {p^{*} ,m^{*} = {\text{argmax}}_{p,m} \frac{n}{1 - dm}d\left( {p - c - s} \right)} \hfill \\ {{\text{s.t.}}\,\,dm < 1 - \frac{n}{N},0 \le d \le 1,m \ge 0} \hfill \\ \end{array} } \right..$$

Let \(\frac{\partial {R}_{M}}{\partial p}=0\) and \(\frac{\partial {R}_{M}}{\partial m}=0\); we then have

$$\left\{ {\begin{array}{*{20}l} {p = q - mt - \sqrt {qt} } \hfill \\ {p = \frac{q + c + s}{2} - mt} \hfill \\ \end{array} } \right..$$

These equations have no solution. Therefore, the optimal solution is at \(m = 0\), and we can obtain

$$\left\{ {\begin{array}{*{20}l} {p^{*} = \frac{q + c + s}{2}} \\ {m^{*} = 0} \\ {R_{M}^{*} = \frac{{n(q - c - s)^{2} }}{4q}} \\ \end{array} } \right..$$

In summary, the optimal strategy of the enterprise is as follows.

$$\left\{ {\begin{array}{*{20}l} {m^{*} = 0,p^{*} = \frac{q + c + s}{2}} \hfill & {(q - c - s)^{2} < 4qt} \hfill \\ {m^{*} = \frac{{2q\left( {N - n} \right)}}{{N\left( {q - c - s} \right)}},p^{*} = \frac{q + c + s}{2} - \frac{{2qt\left( {N - n} \right)}}{{N\left( {q - c - s} \right)}}} \hfill & {(q - c - s)^{2} \ge 4qt} \hfill \\ \end{array} } \right.$$

2. Stackelberg stage-two solution

We plug the enterprise’s optimal strategy into Eq. (5), and we can obtain the decision model of the platform as

$$\left\{ {\begin{array}{*{20}l} {s^{*} = {\text{argmax}}_{s} R_{W} \left( s \right)} \hfill \\ {{\text{ s}}{\text{.t}}{.}\,\,s + v \ge 0,0 \le d \le 1} \hfill \\ \end{array} } \right.$$

where

$$R_{W} \left( s \right) = \left\{ {\begin{array}{*{20}l} {n\frac{q - c - s}{{2q}}\left( {s + v} \right),} \hfill & {(q - c - s)^{2} < 4qt} \hfill \\ {N\frac{q - c - s}{{2q}}\left( {s + v} \right),} \hfill & {(q - c - s)^{2} \ge 4qt} \hfill \\ \end{array} } \right..$$

KKT conditions can be utilized to find a closed-form solution for this optimization task. The Lagrange dual function can be written as \(L(s,{\lambda }_{1},{\lambda }_{2},{\lambda }_{3})=-{R}_{W}(s)+{\lambda }_{1}(-s-v)+{\lambda }_{2}(d-1)+{\lambda }_{3}(-d)\), where \({\lambda }_{\mathrm{1,2},3}\ge 0\). By obtaining the partial derivatives of the Lagrange dual function, the KKT conditions are utilized, and the optimal task assignment coefficients should satisfy the following conditions:

$$\left\{ {\begin{array}{*{20}l} {\frac{\partial L}{{\partial s}} = 0} \hfill \\ {\frac{\partial L}{{\partial \lambda_{i} }} = 0,\quad i = 1,2,3} \hfill \\ {\lambda_{i} \ge 0,\quad i = 1,2,3} \hfill \\ \end{array} } \right..$$

Based on these conditions, the optimal solution to this problem can be divided into the following four scenarios, and each scenario contains proof of the corresponding proposition.

(1) Scenario 1 (Proof of Proposition 1)

When\(\left\{\begin{array}{l}\frac{\partial {R}_{W}}{\partial s}<0\\ (q-c-s{)}^{2}\ge 4qt\\ d=1\end{array}\right.\), the KKT conditions are satisfied. Therefore, the optimal solution for the platform is \({s}^{*}=-q-c\) if \(v>3q+c\) holds. We plug this solution into \(\left\{ {\begin{array}{*{20}l} {p^{*} = \frac{q + c + s}{2} - \frac{{2qt\left( {N - n} \right)}}{{N\left( {q - c - s} \right)}}} \hfill \\ {m^{*} = \frac{{2q\left( {N - n} \right)}}{{N\left( {q - c - s} \right)}}} \hfill \\ {D^{*} = N\frac{q - c - s}{{2q}}} \hfill \\ {R_{M}^{*} = D^{*} \left( {p - s - c} \right)} \hfill \\ {R_{W}^{*} = D^{*} \left( {s + v} \right)} \hfill \\ \end{array} } \right.\) and obtain \(\left\{ {\begin{array}{*{20}l} { p^{*} = - \frac{N - n}{N}t} \hfill \\ {m^{*} = \frac{N - n}{N}} \hfill \\ {D^{*} = N} \hfill \\ {R_{M}^{*} = Nq - \left( {N - n} \right)t} \hfill \\ {R_{W}^{*} = N\left( {v - q - c} \right)} \hfill \\ \end{array} } \right.\) immediately.

(2) Scenario 2 (Proof of Proposition 2)

When \(\left\{ {\begin{array}{*{20}l} {\frac{{\partial R_{W} }}{\partial s} = 0} \hfill \\ {(q - c - s)^{2} \ge 4qt} \hfill \\ {0 \le d \le 1} \hfill \\ \end{array} } \right.\), the KKT conditions are satisfied. Therefore, the optimal solution for the platform is \({s}^{*}=\frac{q-c-v}{2}\) if \(v\le 3q+c\text{ and }t\le \frac{(q-c+v{)}^{2}}{16q}\) hold. We plug this solution into \(\left\{ {\begin{array}{*{20}l} {p^{*} = \frac{q + c + s}{2} - \frac{{2qt\left( {N - n} \right)}}{{N\left( {q - c - s} \right)}}} \hfill \\ {m^{*} = \frac{{2q\left( {N - n} \right)}}{{N\left( {q - c - s} \right)}}} \hfill \\ {D^{*} = N\frac{q - c - s}{{2q}}} \hfill \\ {R_{M}^{*} = D^{*} \left( {p - s - c} \right)} \hfill \\ {R_{W}^{*} = D^{*} \left( {s + v} \right)} \hfill \\ \end{array} } \right.\) and obtain \(\left\{ {\begin{array}{*{20}l} { p^{*} = \frac{3q + c - v}{4} - \frac{{4\left( {N - n} \right)qt}}{{N\left( {q - c + v} \right)}}} \hfill \\ {m^{*} = \frac{{4\left( {N - n} \right)q}}{{N\left( {q - c + v} \right)}}} \hfill \\ {D^{*} = \frac{q - c + v}{{4q}}N} \hfill \\ {R_{M}^{*} = \frac{{N\left( {q - c + v} \right)^{2} }}{16q} - \left( {N - n} \right)t} \hfill \\ {R_{W}^{*} = \frac{{N\left( {q - c + v} \right)^{2} }}{8q}} \hfill \\ \end{array} } \right.\) immediately.

(3) Scenario 3 (Proof of Proposition 3)

When \(\left\{ {\begin{array}{*{20}l} {\frac{{\partial R_{W} }}{\partial s} > 0} \hfill \\ {(q - c - s)^{2} = 4qt} \hfill \\ {0 \le d \le 1} \hfill \\ {R_{W} \ge \left. {R_{W}^{*} } \right|_{{(q - c - s)^{2} < 4qt}} } \hfill \\ \end{array} } \right.\), the KKT conditions are satisfied. Therefore, the optimal solution for the platform is \({s}^{*}=q-c-2\sqrt{qt}\) if \(v\le 3q+c, \, t>\frac{(q-c+v{)}^{2}}{16q}\text{ and }n\le \frac{8\sqrt{qt}\left(q-c+v\right)-16qt}{(q-c+v{)}^{2}}N\) hold. We plug this solution into \(\left\{ {\begin{array}{*{20}l} {p^{*} = \frac{q + c + s}{2} - \frac{{2qt\left( {N - n} \right)}}{{N\left( {q - c - s} \right)}}} \hfill \\ {m^{*} = \frac{{2q\left( {N - n} \right)}}{{N\left( {q - c - s} \right)}}} \hfill \\ {D^{*} = N\frac{q - c - s}{{2q}}} \hfill \\ {R_{M}^{*} = D^{*} \left( {p - s - c} \right)} \hfill \\ {R_{W}^{*} = D^{*} \left( {s + v} \right)} \hfill \\ \end{array} } \right.\) and obtain \(\left\{ {\begin{array}{*{20}l} { p^{*} = q - \frac{2N - n}{N}\sqrt {qt} } \hfill \\ {m^{*} = \frac{N - n}{N}\sqrt{\frac{q}{t}} } \hfill \\ {D^{*} = N\sqrt{\frac{t}{q}} } \hfill \\ {R_{M}^{*} = nt} \hfill \\ {R_{W}^{*} = N\sqrt{\frac{t}{q}} \left( {q - c - 2\sqrt {qt} + v} \right)} \hfill \\ \end{array} } \right.\) immediately.

(4) Scenario 4 (Proof of Proposition 4)

When \(\left\{ {\begin{array}{*{20}l} {\frac{{\partial R_{W} }}{\partial s} = 0} \hfill \\ {(q - c - s)^{2} < 4qt} \hfill \\ {0 \le d \le 1} \hfill \\ {R_{W} > \left. {R_{W} } \right|_{{(q - c - s)^{2} = 4qt}} } \hfill \\ \end{array} } \right.\), the KKT conditions are satisfied. Therefore, the optimal solution for the platform is \({s}^{*}=\frac{q-c-v}{2}\) if \(v\le 3q+c, \, t>\frac{(q-c+v{)}^{2}}{16q}\text{ and }n>\frac{8\sqrt{qt}\left(q-c+v\right)-16qt}{(q-c+v{)}^{2}}N\) hold. We plug this solution into \(\left\{ {\begin{array}{*{20}l} {p^{*} = \frac{q + c + s}{2}} \hfill \\ {m^{*} = 0} \hfill \\ {D^{*} = n\frac{q - c - s}{{2q}}} \hfill \\ {R_{M}^{*} = D^{*} \left( {p - s - c} \right)} \hfill \\ {R_{W}^{*} = D^{*} \left( {s + v} \right)} \hfill \\ \end{array} } \right.\) and obtain \(\left\{ {\begin{array}{*{20}l} { p^{*} = \frac{3q + c - v}{4}} \hfill \\ {m^{*} = 0} \hfill \\ {D^{*} = \frac{q - c + v}{{4q}}n} \hfill \\ {R_{M}^{*} = \frac{{n\left( {q - c + v} \right)^{2} }}{16q}} \hfill \\ {R_{W}^{*} = \frac{{n\left( {q - c + v} \right)^{2} }}{8q}} \hfill \\ \end{array} } \right.\) immediately.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Wu, Y. & Zhong, R. Optimal strategies of social commerce platforms in the context of forwarding and bargaining. Oper Res Int J 23, 24 (2023). https://doi.org/10.1007/s12351-023-00768-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12351-023-00768-8

Keywords

Mathematics Subject Classification

Navigation