Skip to main content
Log in

The value of secondary markets when consumers are socially conscious

  • Original Paper
  • Published:
Operational Research Aims and scope Submit manuscript

Abstract

This study examines the effect of a secondary market with socially conscious consumers on a brand firm’s profitability. The existing literature on the introduction of a secondary market usually assumes a channel setting. In practice, however, brand firms begin introducing physical products to secondary markets with a consumer-to-consumer setting, which is not considered in existing theories. Therefore, we develop a two-period pricing model to investigate the effect of secondary markets with socially conscious consumers and conduct a sensitivity analysis to examine the impact of the main parameters on the equilibrium outcomes. Conventional wisdom suggests that the introduction of the consumer-to-consumer secondary market is always detrimental to suppliers of durable physical goods. However, we demonstrate that a brand firm may benefit from introducing the physical product secondary market if the consumers are socially conscious under certain conditions, which stands in contrast to the existing literature. Moreover, consumers always prefer the introduction of a secondary market; that is, a “win–win” outcome may be achieved. In summary, our findings provide useful implications regarding when managers should introduce a secondary market in case consumers are socially conscious.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. https://discover.certilogo.com/en/blog/news/pandemic-fakes-april-2021-sale-counterfeit-products-marked-all-time-high-paradox-era. (Accessed on Jan. 18, 2022).

  2. https://www.therealreal.com/ (Accessed on Jan. 18, 2022).

  3. https://www2.law.temple.edu/10q/blockchains-promising-future-in-battling-counterfeit-luxury-goods/ (Accessed on Jan. 18, 2022)

  4. Alexander McQueen is a British high-end fashion brand, founded by designer Lee Alexander McQueen in 1992. When the Alexander McQueen fashion house launched its blockchain-powered MCQ platform in 2020, it enabled collaborators and collectors to securely trade items peer-to-peer, and create a community of like-minded people.

  5. The fashion industry is a highly polluting industry. According to a report on the new textiles economy released by the Ellen MacArthur Foundation, the amount of textiles buried or burned per second is as much as that of a garbage truck. https://www.sohu.com/a/282521824_487885; https://everledger.io/industry-solutions/luxury-goods/. (Accessed on Jan. 18, 2022).

  6. https://www.sohu.com/a/354834045_487885 (Accessed on Jan. 18, 2022).

  7. The first collaboration between Everledger and Temera contributed to the new fashion brand MCQ, launched by Alexander McQueen. Under the leadership of MCQ, Everledger has developed technology integration through brand conceptualization, products, and online consumer experience. Temera has developed an NFC chip, which integrates physical clothing with their digital twins, and then records it on the Everledger blockchain platform to achieve the ultimate data security. https://jewelleryoutlook.com/everledger-and-temera-announce-strategic-partnership-to-re-imagine-cx-sustainability-and-authenticity-in-the-fashion-luxury-industries/ (Accessed on Jan. 18, 2022).

  8. The Vestiaire customer research report confirmed that over 70% of respondents reported being committed to “ethical consumption,” and 13% said reported that sustainability was extremely important to them. Among the respondents who are committed to “ethical consumption,” 57% of consumers reported their primary consideration to be the impact on the environment. https://www.sohu.com/a/354834045_487885 (Accessed on Jan. 18, 2022).

References

  • Agrawal V, Lee D (2018) The effect of sourcing policies on suppliers’ sustainable practices. Prod Oper Manag 28:767–787

    Google Scholar 

  • Angelus A (2011) A multiechelon inventory problem with secondary market sales. Manag Sci 57:2145–2162

    Google Scholar 

  • Arya A, Mittendorf B (2004) Benefits of channel discord in the sale of durable goods. Market Sci 25:91–96

    Google Scholar 

  • Balasubramanian S, Bhattacharya S, Viswanathan K (2015) Pricing information goods: a strategic analysis of the selling and pay-per-use mechanisms. Market Sci 34:218–234

    Google Scholar 

  • Bhaskaran S, Gilbert S (2013) Implications of channel structure and operational mode upon a manufacturer’s durability choice. SSRN Electron J 24(7):1071–1085

    Google Scholar 

  • Bulow J (1982) Durable-goods monopolist. J Polit Econ 90:314–32

    Google Scholar 

  • Bulow J (1986) An economic theory of planned obsolescence. Q J Econ 101:729–49

    Google Scholar 

  • Chau N, Schulz S (2014) Selling versus leasing of durable goods: the impact on marketing channels. J Market Channels 21:4–17

    Google Scholar 

  • Chen J, Esteban S, Shum M (2013) When do secondary markets harm firms? Am Econ Rev 103:2911–2934

    Google Scholar 

  • Chen L, Lee H (2015) Sourcing under supplier responsibility risk: the effects of certification, audit, and contingency payment. Manag Sci 63:2795–2812

    Google Scholar 

  • Choi T-M (2019) Blockchain-technology-supported platforms for diamond authentication and certification in luxury supply chains. Transport Res Part E Logist Transp Rev 128:17–29

    Google Scholar 

  • Choi T-M, Guo S, Liu N, Shi X (2020) Optimal pricing in on-demand-service-platform-operations with hired agents and risk-sensitive customers in the blockchain era. Eur J Oper Res 284:1031–1042

    MathSciNet  Google Scholar 

  • Choi T-M, Guo S, Luo S (2020) When blockchain meets social-media: will the result benefit social media analytics for supply chain operations management? Transp Res Part E Logist Transp Rev 135:101860

    Google Scholar 

  • Choi T-M, Luo S (2019) Data quality challenges for sustainable fashion supply chain operations in emerging markets: roles of blockchain, government sponsors and environment taxes. Transp Res Part E Logist Transp Rev 131:139–152

    Google Scholar 

  • Choi T-M, Wen X, Sun X, Chung S-H (2019) The mean-variance approach for global supply chain risk analysis with air logistics in the blockchain technology era. Transp Res Part E Logist Transp Rev 127:178–191

    Google Scholar 

  • Coase R (1972) Durability and Monopoly. J Law Econ 15:143–49

    Google Scholar 

  • Desai P, Koenigsberg O, Purohit D (2004) Strategic decentralization and channel coordination. Quant Market Econ 2:5–22

    Google Scholar 

  • Desai P, Purohit D (1998) Leasing and selling: optimal marketing strategies for a durable goods firm. Manag Sci 44:19–19

    Google Scholar 

  • Dou Y, Hu Y, Wu D (2017) Selling or leasing? Pricing information goods with depreciation of consumer valuation. Inf Syst Res 28(3):585–602

    Google Scholar 

  • Du S, Bhattacharya C (2010) Maximizing business returns to corporate social responsibility (CSR): the role of CSR communication. Int J Manag Rev 12:8–19

    Google Scholar 

  • Dutta P, Choi T-M, Somani S, Butala R (2020) Blockchain technology in supply chain operations: applications, challenges and research opportunities. Transp Res Part E Logist Transp Rev 142:102067

    Google Scholar 

  • Esenduran G, Lu L, Swaminathan J (2019) Buyback pricing of durable goods in dual distribution channels. Manuf Serv Oper Manag 22:412–428

    Google Scholar 

  • Feng L, Zheng X, Govindan K, Xue K (2019) Does the presence of secondary market platform really hurt the firm? Int J Prod Econ 213:55–68

    Google Scholar 

  • Galbreth M, Ghosh B (2013) Competition and sustainability: the impact of consumer awareness. Decis Sci 44:127–159

    Google Scholar 

  • Geegamage T, Ranaweera A, Halwatura R (2021) Second-hand fashion consumption: a literature review

  • Ghose A, Telang R, Krishnan R (2005) Effect of electronic secondary markets on the supply chain. J Manag Inf Syst 22:91–120

    Google Scholar 

  • Guo R, Lee H, Swinney R (2016) Responsible sourcing in supply chains. Manag Sci 62:2722–2744

    Google Scholar 

  • Guo X, Xiao G, Zhang F (2017) Effect of consumer awareness on corporate social responsibility under asymmetric information. SSRN Electron J

  • Hendel I, Lizzeri A (1999) Interfering with secondary markets. RAND J Econ 30:1–21

    Google Scholar 

  • Hur E (2020) Rebirth fashion: secondhand clothing consumption values and perceived risks. J Clean Prod 273:122951

    Google Scholar 

  • Iyer G, Soberman D (2016) Social responsibility and product innovation. Market Sci 35:727–742

    Google Scholar 

  • Jiang B, Tian L (2016) Collaborative consumption: strategic and economic implications of product sharing. Manag Sci 64:1171–1188

    Google Scholar 

  • Kim S-H (2015) Time to come clean? Disclosure and inspection policies for green production. Oper Res 63:1–20

    MathSciNet  Google Scholar 

  • Lee H, Whang S (2002) The impact of the secondary market on the supply chain. Manag Sci 48:719–731

    Google Scholar 

  • Li X (2020) Reducing channel costs by investing in smart supply chain technologies. Transp Res Part E Logist Transp Rev 137:101927

    Google Scholar 

  • Li Z, Xu X, Bai Q, Guan X, Zeng K (2021) The interplay between blockchain adoption and channel selection in combating counterfeits. Transp Res Part E Logist Transp Rev 155:102451

    Google Scholar 

  • Liu H, Lei M, Huang T, Leong G (2017) Refurbishing authorization strategy in the secondary market for electrical and electronic products. Int J Prod Econ 195:585–602

    Google Scholar 

  • Niu B, Dong J, Liu Y (2021) Incentive alignment for blockchain adoption in medicine supply chains. Transp Res Part E Logist Transp Rev 152:102276

    Google Scholar 

  • Pun H, Swaminathan J, Hou P (2021) Blockchain adoption for combating deceptive counterfeits. Prod Oper Manag 30:864–882

    Google Scholar 

  • Servaes H, Tamayo A (2012) The impact of corporate social responsibility on firm value: the role of customer awareness. Manag Sci 59:1045–1061

    Google Scholar 

  • Shen B, Cao Y, Xu X (2019) Product line design and quality differentiation for green and non-green products in a supply chain. Int J Prod Res 58:1–17

    Google Scholar 

  • Shen B, Dong C, Minner S (2021) Combating copycats in the supply chain with permissioned blockchain technology. Prod Oper Manag

  • Shen B, Xu X, Yuan Q (2020) Selling secondhand products through an online platform with blockchain. Transp Res Part E Logist Transp Rev 142:102066

    Google Scholar 

  • Shulman J, Coughlan A (2007) Used goods, not used bads: profitable secondary market sales for a durable goods channel. Quant Market Econ 5:191–210

    Google Scholar 

  • Tan Y (2022) Implications of blockchain–powered marketplace of pre-owned virtual goods. Prod Oper Manag

  • Wang Y, Tao F, Wang J-C (2021) Information disclosure and blockchain technology adoption strategy for competing platforms. Inf Manag 59(7):103506

    Google Scholar 

  • Wang Z, Zheng Z, Jiang W, Tang S (2021) Blockchain-enabled data sharing in supply chains: model, operationalization and tutorial. Prod Oper Manag 30:1965–1985

    Google Scholar 

  • Xu Y, Cho S.-H, Tayur S (2015) Combating child labor: incentives and information transparency in global supply chains. SSRN Electron J

  • Yin S, Ray S, Gurnani H, Animesh A (2010) Durable products with multiple used goods markets: product upgrade and retail pricing implications. Market Sci 29:540–560

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Editor-in-Chief, the anonymous Associate Editor, and two anonymous referees for their thoughtful comments that have significantly improved the paper. This work was supported by the National Funded Postdoctoral Program of China (GZC20230559), National Natural Science Foundation of China (72072041), Natural Science Foundation of Guangdong Province (2023A1515011059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Hou.

Ethics declarations

Conflict of interest

none

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Equilibrium outcomes when not considering socially conscious consumers

Let \(A_{1}=(4 (-1 + \lambda ) \lambda ^2 + \gamma ^2 (-2 + \lambda ) (2 + 3 \lambda ) + 4 \gamma \lambda (-2 + \lambda ^2))\), and \(A_{2}=(\gamma + \lambda + \gamma \lambda )\).

$$\begin{aligned}{} & {} p_{1}^{bn*}=\frac{2 (\gamma + \lambda + 2 \gamma \lambda ) ((-1 + \lambda ) \lambda + \gamma (-1 + (-1 + \lambda ) \lambda ))}{A_{1}}\\{} & {} p_{2}^{bn*}=\frac{\gamma + \lambda - \lambda ^2 + \gamma \lambda (1 - \lambda +p_{1}^{bn*}}{2 A_2}\\{} & {} p_{s}^{bn*}=\frac{g \lambda (-8 \gamma ^2 - 2 \gamma (8 + 7 \gamma ) \lambda + (-8 + 3 (-2 + \gamma ) \gamma ) \lambda ^2 + 8 (1 + \gamma )^2 \lambda ^3)}{2 A_2 (A_{1})}\\{} & {} d_{1n}^{bn*}=\frac{-4 \gamma ^3 - 4 \gamma ^2 (3 + 2 \gamma ) \lambda -12 \gamma (1 + \gamma ) \lambda ^2 + (-4 + \gamma ^2 (8 + 5 \gamma )) \lambda ^3 + 4 (1 + \gamma )^2 \lambda ^4}{2 A_2 (A_{1})}\\{} & {} d_{2n}^{bn*}=\frac{4 (-1 + \lambda ) \lambda ^2 - \gamma ^2 (4 + \lambda (6 + \lambda )) + 2 \gamma \lambda (-4 + \lambda (-1 + 2 \lambda ))}{8 (-1 + \lambda ) \lambda ^2 + 2 \gamma ^2 (-2 + \lambda ) (2 + 3 \lambda ) + 8 \gamma \lambda (-2 + \lambda ^2)}\\{} & {} d_{s}^{bn*}=\frac{4 \gamma ^3 + 4 \gamma ^2 (1 + 2 \gamma ) \lambda + 2 (-2 + \gamma ) \gamma (1 + \gamma ) \lambda ^2 - (1 + \gamma ) (4 + \gamma (2 + \gamma )) \lambda ^3 + 4 (1 + \gamma )^2 \lambda ^4}{2 A_2 (A_{1})}\\{} & {} \pi ^{bn*}=\frac{(8 \gamma ^2 + 4 \gamma (4 + 5 \gamma ) \lambda + (8 + \gamma (16 + 13 \gamma )) \lambda ^2 - 4 (1 + \gamma ) \lambda ^3) ((-1 + \lambda ) \lambda + \gamma (-1 + (-1 + \lambda ) \lambda ))}{4 A_2 A_1} \end{aligned}$$

1.2 Equilibrium outcomes when considering socially conscious consumers

$$\begin{aligned}{} & {} p_{1}^{bs*}=\frac{2 ((-1 + \lambda ) \lambda + \gamma (-1 + (-1 + \lambda ) \lambda )) (\gamma + \lambda + 2 \gamma \lambda + \gamma r \theta )}{A_{1}}\\{} & {} p_{2}^{bs*}=\frac{\gamma + \lambda - \lambda (\lambda + r \theta ) + \gamma \lambda (1 - \lambda - r \theta +p_{1}^{bs*})}{2 A_2}\\{} & {} p_{s}^{bs*}=\frac{ \left\{ \begin{array}{l} \gamma \lambda (-8 \gamma ^2 - 2 \gamma (8 + 7 \gamma ) \lambda + (-8 + 3 (-2 + \gamma ) \gamma ) \lambda ^2 + 8 (1 + \gamma )^2 \lambda ^3) ((-1 + \lambda ) \lambda \\ \quad +\gamma (-1 + (-1 + \lambda ) \lambda )) + \gamma (8 \gamma ^3 + 4 \gamma ^2 (6 + 5 \gamma ) \lambda + 4 \gamma (1 + \gamma ) (6 + \gamma ) \lambda ^2 - 4 (1 + \gamma ) (-2 \\\quad + \gamma (3 + 4 \gamma )) \lambda ^3 - (1 + \gamma ) (12 + \gamma (16 + 3 \gamma )) \lambda ^4 + 4 (1 + \gamma )^3 \lambda ^5) r \theta \end{array} \right\} }{2 A_2 ((-1 + \lambda ) \lambda + \gamma (-1 + (-1 + \lambda ) \lambda )) A_1}\\{} & {} d_{1n}^{bs*}=\frac{ \left\{ \begin{array}{l} 4 (-1 + \lambda )^2 \lambda ^4 + 4 \gamma (-1 + \lambda ) \lambda ^3 (-4 + \lambda (-1 + 3 \lambda ) - r \theta ) + \gamma ^4 (4 + 4 r \theta + \lambda (12 \\ \quad+ \lambda (4 + \lambda (-13 + 5 (-1 + \lambda ) \lambda )) + (8 + (-4 + \lambda ) \lambda ^2) r \theta )) + \gamma ^3 \lambda (4 (4 + 3 r \theta ) + \lambda (4 (7\\ \quad+ 3 r \theta ) + \lambda (\lambda (-29 + \lambda (9 + 4 \lambda ) - 3 r \theta ) - 8 (2 + r \theta )))) + 4 \gamma ^2 \lambda ^2 (6 + 3 r \theta + \lambda (3 \\ \quad+ \lambda (\lambda (-1 + 3 \lambda ) - 2 (5 + r \theta )))) \end{array} \right\} }{2 A_2 ((-1 + \lambda ) \lambda + \gamma (-1 + (-1 + \lambda ) \lambda )) A_1} \\{} & {} d_{2n}^{bs*}=\frac{\left\{ \begin{array}{l} 4 (-1 + \lambda ) \lambda ^3 (-1 + \lambda + r \theta ) + 2 \gamma \lambda ^2 (6 - 4 r \theta + \lambda (-3 - 2 r \theta + \lambda (-7 + 4 \lambda + 4 r \theta ))) \\ \quad+ \gamma ^3 (4 - \lambda (2 (-5 + r \theta ) + \lambda (-3 + 2 r \theta + \lambda (5 + \lambda - r \theta )))) + \gamma ^2 \lambda (12 \\ \quad- 4 r \theta + \lambda (12 - 10 r \theta + \lambda (-15 + r \theta + \lambda (-7 + 4 \lambda + 4 r \theta )))) \end{array} \right\} }{2 ((-1 + \lambda ) \lambda + \gamma (-1 + (-1 + \lambda ) \lambda )) A_1}\\{} & {} d_{s}^{bs*}=\frac{\left\{ \begin{array}{l} 4 (-1 + \lambda ) \lambda ^3 ((-1 + \lambda ) \lambda + (-2 + \lambda ) r \theta ) + \gamma ^2 \lambda (\lambda ^2 (16 + \lambda (-5 + 3 \lambda (-7 + 4 \lambda ))) + (-4 \\ \quad+ 3 (-2 + \lambda ) \lambda ) (-6 + \lambda (-1 + 4 \lambda )) r \theta ) + \gamma ^3 (\lambda (-8 + \lambda (-6 + 15 \lambda + 4 (-2 + \lambda ) \lambda ^3)) + 2 (-2 \\ \quad+ (-2 + \lambda ) \lambda ) (-2 + \lambda (-6 + \lambda + 2 \lambda ^2)) r \theta ) + \gamma ^4 (-4 + 4 r \theta + \lambda (-12 - \lambda (2 + \lambda ) (3 + (-5 \\ \quad+ \lambda ) \lambda ) + (8 + (-4 + \lambda ) \lambda ^2) r \theta )) + 2 \gamma \lambda ^2 (12 r \theta + \lambda (4 + \lambda (1 - 16 r \theta + \lambda (-11 + 6 \lambda + 6 r \theta )))) \end{array} \right\} }{2 A_2 ((-1 + \lambda ) \lambda + \gamma (-1 + (-1 + \lambda ) \lambda )) A_1}\\{} & {} \pi ^{bs*}=\frac{\left\{ \begin{array}{l} 4 \gamma \lambda ^3 (8 - (-3 + \lambda ) (-2 + \lambda ) \lambda (1 + 3 \lambda ) - 4 r \theta - 2 \lambda (1 + 3 (-2 + \lambda ) \lambda ) r \theta + (2 + (2 \\ \quad- 3 \lambda ) \lambda ) r^2 \theta ^2) + \gamma ^4 ((1 + \lambda - \lambda ^2)^2 (8 + \lambda (20 + 13 \lambda )) + 2 (-1 + (-1 + \lambda ) \lambda ) (-4 - 8 \lambda \\ \quad+ 5 \lambda ^3) r \theta + (-2 + (-2 + \lambda ) \lambda )^2 r^2 \theta ^2) + \gamma ^2 \lambda ^2 (48 + \lambda (48 - \lambda (107 + \lambda (50 + \lambda (-77 \\ \quad+ 12 \lambda )))) - 2 \lambda (20 + \lambda - 29 \lambda ^2 + 12 \lambda ^3) r \theta + (8 + \lambda (12 + (5 - 12 \lambda ) \lambda )) r^2 \theta ^2) + 2 \gamma ^3 \lambda (\lambda (44 \\ \quad+ \lambda (3 - (-2 + \lambda ) \lambda (-30 + \lambda (-21 + 2 \lambda )))) + \lambda (4 - \lambda (25 + 2 \lambda (3 + \lambda (-9 + 2 \lambda )))) r \theta + (4 \\ \quad +4 \lambda + \lambda ^3 - 2 \lambda ^4) r^2 \theta ^2 + 8 (2 + r \theta )) - 4 (-1 + \lambda ) \lambda ^4 (2 + \lambda ^2 + r \theta (-2 + r \theta ) + \lambda (-3 + 2 r \theta )) \end{array} \right\} }{2 A_2 ((-1 + \lambda ) \lambda + \gamma (-1 + (-1 + \lambda ) \lambda )) A_1} \end{aligned}$$

1.3 Proof of main results

Proof of proposition 1:

From the equilibrium outcomes in the above, regarding part(i), we can derive that \(\frac{\partial p_{1}^{bn*}}{\partial \gamma }=2 \lambda ^2 (8 (-1 + \lambda )^2 \lambda ^2 + 2 \gamma (-1 + \lambda ) \lambda (-8 + \lambda (-7 + 8 \lambda )) + \gamma ^2 (8 + \lambda (14 + \lambda \ (-10 + \lambda (-13 + 8 \lambda )))))/A_1^2>0\); \(\frac{\partial p_{2}^{bn*}}{\partial \gamma }=\lambda ^2 (24 \gamma ^4 + 16 \gamma ^3 (6 + 5 \gamma ) \lambda + 2 \gamma ^2 (72 + \gamma (96 + 31 \gamma )) \lambda ^2 + 6 \gamma (16 - \gamma (2 + \gamma ) (-8 + 7 \gamma )) \lambda ^3 - (-24 + \gamma (64 + \gamma \ (234 + \gamma (208 + 59 \gamma )))) \lambda ^4 + 2 (1 + \gamma ) (-24 + \gamma (-32 + (-11 + \gamma ) \ \gamma )) \lambda ^5 + 8 (1 + \gamma )^2 (3 + 2 \gamma (2 + \gamma )) \lambda ^6)/2A_1^2A_2^2>0\); \(\frac{\partial p_{s}^{bn*}}{\partial \gamma }=\lambda ^2 (32 \gamma ^4 + 16 \gamma ^3 (8 + 7 \gamma ) \lambda + 4 \gamma ^2 (48 + \gamma (68 + 19 \gamma )) \lambda ^2 + 4 \gamma (32 + \gamma (36 - \gamma (22 + 23 \gamma ))) \lambda ^3 - (-32 + \gamma (80 + \ \gamma (372 + \gamma (352 + 97 \gamma )))) \lambda ^4 + 4 (-16 + \gamma (-44 - 33 \gamma + 5 \gamma ^3)) \lambda ^5 + 32 (1 + \gamma )^4 \lambda ^6)/2A_1^2A_2^2>0\)

Regarding part(ii), we can derive that \(\frac{\partial d_{1n}^{bn*}}{\partial \gamma }=\gamma \lambda ^3 (8 (-1 + \lambda ) \lambda ^3 + 8 \gamma ^2 \lambda (1 + 2 \lambda ) (-3 + 2 \lambda ^2) + 4 \gamma \lambda ^2 (-6 + \lambda (-3 + 8 \lambda )) + \gamma ^3 (-8 + \lambda (2 + \lambda ) \ (-14 + \lambda (-1 + 8 \lambda ))))/2A_1^2A_2^2<0\); \(\frac{\partial d_{2n}^{bn*}}{\partial \gamma }=\lambda ^2 (4 \gamma ^2 + 4 \gamma (2 + 3 \gamma ) \lambda + (4 - (-8 + \gamma ) \gamma ) \ \lambda ^2 - 4 (1 + 2 \gamma (2 + \gamma )) \lambda ^3)/A_1^2>0\); \(\frac{\partial d_{s}^{bn*}}{\partial \gamma }=\lambda (-32 \gamma ^4 - 8 \gamma ^3 (16 + 15 \gamma ) \lambda - 4 \gamma ^2 (48 + \gamma (76 + 29 \gamma )) \lambda ^2 + 2 \gamma (-64 + \gamma (-96 + \gamma (-12 + 19 \gamma ))) \lambda ^3 + (-32 + \gamma (48 + \ \gamma (276 + \gamma (292 + 93 \gamma )))) \lambda ^4 + 2 (1 + \gamma ) (28 + \gamma (52 + 7 \gamma (5 + \gamma ))) \lambda ^5 - 8 (1 + \gamma )^2 (3 + 2 \gamma (2 + \gamma )) \lambda ^6)/2A_1^2A_2^2<0\).

Regarding part(iii), we can derive that \(\frac{\partial \pi _{1}^{bn*}}{\partial \gamma }=\lambda ^2 (-32 \gamma ^6 - 48 \gamma ^5 (4 + 3 \gamma ) \lambda - 4 \gamma ^4 (120 + \gamma (156 + 35 \gamma )) \lambda ^2 + 16 \gamma ^3 (1 + \gamma ) (-40 + \gamma (-20 + 13 \gamma )) \lambda ^3 + \gamma ^2 (-480 + \gamma \ (-480 + \gamma (856 + \gamma (1216 + 359 \gamma )))) \lambda ^4 + \gamma (-192 + \ \gamma (240 + \gamma (1744 + \gamma (1936 + (554 - 65 \gamma ) \gamma )))) \lambda ^5 + (-32 + \ \gamma (336 + \gamma (1076 - \gamma (-624 + \gamma (741 + 908 \gamma + 250 \gamma ^2))))) \lambda ^6 - (1 + \gamma ) \ (-96 + \gamma (32 + \gamma (672 + \gamma (876 + \gamma (331 + 3 \gamma ))))) \lambda ^7 + 4 (1 + \gamma )^2 (-24 + \gamma (-44 + \gamma (-1 + 7 \gamma (5 + 2 \gamma )))) \lambda ^8 + 32 (1 + \gamma )^5 \lambda ^9)/A_1^2A_2^2>0\); \(\frac{\partial \pi _{2}^{bn*}}{\partial \gamma }=-\lambda ^2 (32 \gamma ^4 + 8 \gamma ^3 (16 + 15 \gamma ) \lambda + 4 \gamma ^2 (48 + \gamma (74 + 27 \gamma )) \lambda ^2 + 2 \gamma (64 + \gamma (84 - \gamma (16 + 35 \gamma ))) \lambda ^3 - (-32 + \gamma (72 + \ \gamma (356 + 5 \gamma (74 + 23 \gamma )))) \lambda ^4 + 4 (1 + \gamma )^2 (-16 + (-14 + \gamma ) \gamma ) \lambda ^5 + 32 (1 + \gamma )^4 \lambda ^6) (-4 (-1 + \lambda ) \lambda ^2 \ + 2 \gamma \lambda (4 + \lambda - 2 \lambda ^2) + \gamma ^2 (4 + \lambda (6 + \lambda )))/4A_1^3A_2^2>0\).\(\Box\)

Proof of proposition 2:

From the equilibrium outcomes, regarding part(i), by solving \(\frac{\partial p_{1}^{bn*}}{\partial \lambda }=2 \gamma ^2 (8 \gamma ^2 + 2 \gamma (8 + 7 \gamma ) \lambda + (8 - \gamma (2 + 11 \gamma )) \lambda ^2 - 16 (1 + \gamma )^2 \lambda ^3 + (1 + \gamma ) (7 + 6 \gamma ) \lambda ^4)/A_1^2>0\), which reduces \(0<\lambda <\lambda _{1}\), where \(\lambda _{1}\) is third root of \(\frac{\partial p_{1}^{bn*}}{\partial \lambda }=0\); by solving \(\frac{\partial p_{2}^{bn*}}{\partial \lambda }=-8 \gamma ^6 - 16 \gamma ^6 \lambda + 2 \gamma ^4 (48 + \gamma (48 + 5 \gamma )) \lambda ^2 + 4 \gamma ^3 (1 + \gamma ) (56 + \gamma (40 + 9 \gamma )) \lambda ^3 + 2 \gamma ^2 (1 + \gamma ) (108 + \gamma (84 + \gamma + 10 \gamma ^2)) \lambda ^4 + 2 \gamma (1 + \gamma ) (48 + \gamma (-24 + \gamma (-128 + \ (-58 + \gamma ) \gamma ))) \lambda ^5 - (1 + \gamma )^2 (-16 + \ \gamma (128 + \gamma (128 + \gamma (14 + 3 \gamma )))) \lambda ^6 + 8 (1 + \gamma )^3 (2 + \gamma ) (-2 + 3 \gamma ) \lambda ^7 + 16 (1 + \gamma )^4 \lambda ^8/2A_1^2>0\), which reduces \(0<\lambda <\lambda _{2}\), where \(\lambda _{1}\) is second root of \(\frac{\partial p_{2}^{bn*}}{\partial \lambda }=0\); by solving \(\frac{\partial p_{s}^{bn*}}{\partial \lambda }=\gamma ^2 (32 \gamma ^4 + 16 \gamma ^3 (8 + 7 \gamma ) \lambda + 4 \gamma ^2 (48 + 17 \gamma (4 + \gamma )) \lambda ^2 - 8 \gamma (-16 + \gamma (-18 + \gamma (15 + 16 \gamma ))) \lambda ^3 - (-32 + \gamma (80 + \ \gamma (420 + \gamma (460 + 153 \gamma )))) \lambda ^4 - 16 (1 + \gamma )^3 (4 + \gamma ) \lambda ^5 + 4 (1 + \gamma )^2 (6 + \gamma (11 + 6 \gamma )) \lambda ^6)/2A_1^2A_2^2>0\), which reduces \(0<\lambda <\lambda _{3}\), where \(\lambda _{3}\) is the third root of \(\frac{\partial p_{s}^{bn*}}{\partial \lambda }=0\).

Regarding part(ii), we can derive that \(\frac{\partial d_{1n}^{bn*}}{\partial \lambda }=\gamma ^2 \lambda (-4 \lambda ^5 - 8 \gamma \lambda ^3 (1 + \lambda + 2 \lambda ^2) - \gamma ^4 (2 + 5 \lambda ) (4 + \lambda (6 + \lambda )) - 4 \gamma ^2 \lambda ^2 (6 + \lambda (9 + \lambda (4 + 5 \lambda ))) - 8 \gamma ^3 \lambda (3 + \lambda (8 + \lambda (4 + \ \lambda + \lambda ^2))))/2A_1^2A_2^2<0\); \(\frac{\partial d_{2n}^{bn*}}{\partial \lambda }=\gamma (4 \lambda ^4 + 4 \gamma \lambda ^2 (1 + \lambda (2 + 3 \lambda )) + \gamma ^3 (4 + \lambda (16 + 11 \lambda )) + 4 \gamma ^2 \lambda (2 + \lambda (5 + 2 \lambda (1 + \lambda ))))/A_1^2>0\); by solving \(\frac{\partial d_{s}^{bn*}}{\partial \lambda }=\gamma (32 \gamma ^4 - 8 \gamma ^3 (-16 + (-14 + \gamma ) \gamma ) \lambda + 4 \gamma ^2 (48 + \gamma (68 + (11 - 8 \gamma ) \gamma )) \lambda ^2 - 16 \gamma (1 + \gamma ) (-8 + \gamma (-1 + 2 \gamma (5 + \gamma ))) \lambda ^3 - (1 + \gamma ) \ (-32 + \gamma (112 + \gamma (316 + 5 \gamma (36 + \gamma )))) \lambda ^4 - 8 (1 + \gamma )^2 (2 + \gamma ) (4 + 3 \gamma ) \lambda ^5 + 8 (1 + \gamma )^3 (3 + 2 \gamma ) \lambda ^6)/2A_1^2A_2^2>0\), which reduces \(0<\lambda <\lambda _{4}\), where \(\lambda _{4}\) is the third root of 0\(.\frac{\partial d_{s}^{bn*}}{\partial \lambda }=0\).

Regarding part(iii), by solving

$$\frac{\partial \pi _{1}^{bn*}}{\partial \lambda }=\gamma ^2 (-32 \gamma ^6 - 48 \gamma ^5 (4 + 3 \gamma ) \lambda - 12 \gamma ^4 (40 + \gamma (52 + 11 \gamma )) \lambda ^2 + 4 \gamma ^3 (-160 + \gamma (-240 + \gamma (-16 + 65 \gamma ))) \lambda ^3 + \gamma ^2 (-480 + \gamma \ (-480 + \gamma (976 + \gamma (1468 + 483 \gamma )))) \lambda ^4 + 2 \gamma (1 + \gamma ) (-96 + \gamma (216 + \gamma (736 + \ \gamma (472 + 27 \gamma )))) \lambda ^5 - (1 + \gamma ) (32 + \ \gamma (-368 + \gamma (-828 + \gamma (-236 + \gamma (441 + 242 \gamma ))))) \lambda ^6 - 2 (1 + \gamma ) (-48 + \gamma (-8 + \gamma (270 + \gamma \ (412 + \gamma (211 + 30 \gamma ))))) \lambda ^7 + (1 + \gamma )^2 \ (-88 + \gamma (-180 + \gamma (-88 + 5 \gamma (7 + 6 \gamma )))) \lambda ^8 + 4 (1 + \gamma )^3 (6 + \gamma (9 + 2 \gamma )) \lambda ^9)/A_1^2A_2^2>0,$$

which reduces \(0<\lambda <\lambda _{5}\), where \(\lambda _{5}\) is the fifth root of \(\frac{\partial \pi _{1}^{bn*}}{\partial \lambda }=0\); by solving

$$\frac{\partial \pi _{2}^{bn*}}{\partial \lambda }=-(16 \gamma ^6 + 32 \gamma ^5 (1 + 2 \gamma ) \lambda + 4 \gamma ^4 (-12 + \gamma (12 + 19 \gamma )) \lambda ^2 - 8 \gamma ^3 (1 + \gamma ) (24 + 5 \gamma ) \lambda ^3 - 4 \gamma ^2 (1 + \gamma ) (52 + \gamma (26 + \gamma (-5 + 13 \gamma ))) \lambda ^4 - 2 \gamma (1 + \gamma ) (48 + \gamma (-36 + \gamma (-136 + \ \gamma (-43 + 12 \gamma )))) \lambda ^5 + (1 + \gamma )^2 (-16 + \ \gamma (136 + \gamma (128 + \gamma (-2 + 3 \gamma )))) \lambda ^6 - 8 (1 + \gamma )^3 (-4 + 5 \gamma (1 + \gamma )) \lambda ^7 - 16 (1 + \gamma )^4 \lambda ^8) (-4 (-1 + \lambda ) \lambda ^2 \ + 2 \gamma \lambda (4 + \lambda - 2 \lambda ^2) + \gamma ^2 (4 + \lambda (6 + \lambda )))/4A_1^3A_2^2>0,$$

which reduces \(\max \{0,\lambda _{6}\}<\lambda <\min \{\lambda _{7},1\}\), where \(\lambda _{6}\) and \(\lambda _{7}\) are the second and third root of \(\frac{\partial \pi _{1}^{bn*}}{\partial \lambda }=0\), respectively. \(\Box\)

Proof of proposition 3:

Regarding part(i), by comparing the optimal price of the new product in the first period and the second period, we can derive that \(p_{1}^{bn*}-p_{2}^{bn*}=\lambda (6 \gamma ^2 + \gamma (10 + 7 \gamma ) \lambda + 4 (1 + \gamma ) \lambda ^2) ((-1 + \lambda ) \lambda + \ \gamma (-1 + (-1 + \lambda ) \lambda ))/A_1A_2>0\); by comparing the optimal price of the new product in the second period and the secondhand product, we can derive that \(p_{2}^{bn*}-p_{s}^{bn*}=-(-1 + \lambda ) (-4 \gamma ^2 - 2 \gamma (4 + \gamma ) \lambda + (-4 + \gamma (2 + 7 \gamma )) \lambda ^2 + 4 (1 + \gamma ) \lambda ^3)/2A_1>0\).

Regarding part(ii), by comparing the optimal demand of the new product in the first period and the second period, we have \(d_{1n}^{bn*}-d_{2n}^{bn*}=\gamma \lambda (\gamma +\lambda + 2 \gamma \lambda ) (2\lambda + \gamma (2 + 3\lambda ))/2A_1A_2<0\); by comparing the optimal price of the new product in the second period and the secondhand product, we have \(d_{2n}^{bn*}-d_{s}^{bn*}=\gamma (4 (-2 + \lambda ) \lambda ^2 - \gamma ^2 (2 + 3 \lambda ) (4 + 3 \lambda ) + 2 \gamma \lambda (-8 + \lambda (-7 + 2 \lambda )))/2A_1A_2>0\). \(\Box\)

Proof of proposition 4:

We compare the profits and consumer surplus between the benchmark scenario and the introduction of the secondary market without socially conscious consumers. The results as are follows: \(\pi ^{bn*}-\pi ^{b*}=4 \gamma ^4 + 8 \gamma ^4 \lambda + \gamma ^2 (-8 + (-11 + \gamma ) \gamma ) \ \lambda ^2 - 3 \gamma ^2 (1 + \gamma )^2 \lambda ^3 + (1 + \gamma ) (4 + \ \gamma (8 + 9 \gamma )) \lambda ^4 - 4 (1 + \gamma )^2 \lambda ^5/4A_1A_2<0\) and \(cs^{bn*}-cs^{b*}=-4 \gamma ^3 (1 + 4 \gamma ) + 4 \gamma ^2 (3 + 6 \gamma + 8 \gamma ^2) \lambda + 4 \gamma (3 + \gamma (2 + (-2 + \gamma ) \gamma )) \lambda ^2 \ - 4 (1 + \gamma )^2 (-1 + 3 \gamma ^2) \lambda ^3 + (1 + \gamma ) (8 + 3 \gamma (4 + 5 \gamma )) \lambda ^4 - 12 (1 + \gamma )^2 \lambda ^5/4A_1A_2>0\). \(\Box\)

Proof of proposition 5:

In equilibrium, we can derive that

$$\begin{aligned}{} & {} \frac{\partial p_{1}^{bs*}}{\partial \gamma }=\frac{\left\{ \begin{array}{l} 2 \lambda (2 \gamma (-1 + \lambda ) \lambda ^2 (-8 + \lambda (-7 + 8 \lambda )) + 8 \gamma (\lambda - 2 \lambda ^3 + \lambda ^4) r \theta + 4 (-1 + \lambda )^2 \lambda ^2 (2 \lambda \\ \quad + r \theta ) + \gamma ^2 (\lambda (8 + \lambda (14 + \lambda (-10 + \lambda (-13 + 8 \lambda )))) +\\ (4 + (-1 + \lambda ) \lambda (-8 + \lambda (-3 + 4 \lambda ))) r \theta )) \end{array} \right\} }{(A_{1})^2}\\{} & {} \frac{\partial p_{2}^{bs*}}{\partial \gamma }=\frac{\left\{ \begin{array}{l} \lambda (8 (-1 + \lambda )^2 \lambda ^4 (3 \lambda + 2 r \theta ) + 16 \gamma (-1 + \lambda ) \lambda ^3 (\lambda (-6 + \lambda (-2 + 5 \lambda )) + (1 + \lambda ) (-4 + 3 \lambda ) r \theta )\\ \quad + 2 \gamma ^2 \lambda ^2 (\lambda (72 + \lambda (48 + \lambda (-117 + \lambda (-43 +\\ 52 \lambda )))) + 4 (1 + \lambda ) (12 + \lambda (-6 + \lambda (-12 + 7 \lambda ))) r \theta ) + 4 \gamma ^3 \lambda (\lambda (24 + \lambda (48 + \lambda (-9\\ \quad + \lambda (-52 + \lambda (-5 + 16 \lambda ))))) + 2 (8 + \lambda (14 + \lambda (-4 + (-2 + \\ \lambda ) \lambda (7 + 4 \lambda )))) r \theta ) + \gamma ^4 (16 r \theta + \lambda (24 + 48 r \theta + \lambda (80 + 32 r \theta + \lambda (62 - 24 r \theta + \lambda (-42 - 29 r \theta + \lambda (-59 + 2 \lambda (1 + 8 \lambda + 4 r \theta )))))))) \end{array} \right\} }{2 A_2^2 (4 (-1 + \lambda ) \lambda ^2 + \gamma ^2 (-2 + \lambda ) (2 + 3 \lambda ) + 4 \gamma \lambda (-2 + \lambda ^2))^2}\\{} & {} \frac{\partial p_{s}^{bs*}}{\partial \gamma }=\frac{\left\{ \begin{array}{l} \lambda (16 (-1 + \lambda )^3 \lambda ^6 (2 (-1 + \lambda ) \lambda + (-2 + \lambda ) r \theta ) + 16 \gamma (-1 \\ \quad + \lambda )^2 \lambda ^5 ((-1 + \lambda ) \lambda (-4 + 3 \lambda ) (3 + 4 \lambda ) + 2 (-2 + \lambda ) (-3 + \lambda (-1 + 3 \lambda )) r \theta ) + 4 \gamma ^2 (-1 + \\ \lambda ) \lambda ^4 ((-1 + \lambda ) \lambda (120 + \lambda (140 + \lambda (-205 + \lambda (-137 + 120 \lambda )))) \\ \quad + 2 (-60 + \lambda (-10 + \lambda (133 + 5 \lambda (-3 + 2 \lambda (-8 + 3 \lambda ))))) r \theta ) + 8 \gamma ^3 (-1 + \\ \lambda ) \lambda ^3 (\lambda (-80 + \lambda (-140 + \lambda (170 + \lambda (265 \\ \quad + \lambda (-172 + 5 \lambda (-27 + 16 \lambda )))))) + (-80 + \lambda (-120 + \lambda (132 + \lambda (188 + \lambda (-100 + \lambda (-81 + 40 \lambda )))))) r \theta ) + \\ 2 \gamma ^5 \lambda (\lambda (-1 + (-1 + \lambda ) \lambda ) (-96 + \lambda (-280 + \lambda (8 + \lambda (524 \\ \quad + \lambda (137 + \lambda (-357 - 76 \lambda + 96 \lambda ^2)))))) + (96 + \lambda (304 + (-2 + \lambda ) \lambda (-32 + \lambda (288 + \\ \lambda (330 + \lambda (-73 + \lambda (-193 + 4 \lambda \\ \quad + 48 \lambda ^2))))))) r \theta ) + \gamma ^4 \lambda ^2 (\lambda (480 + \lambda (1120 + \lambda (-1080 + \lambda (-3072 + \lambda (1263 + \lambda (3014 + \lambda (-1109 + 16 \lambda (-67 +\\ 30 \lambda )))))))) + (480 + \lambda (880 + \lambda (-1024 + \lambda (-2128 + \lambda (956 \\ \quad + \lambda (1817 + \lambda (-621 + 8 \lambda (-73 + 30 \lambda )))))))) r \theta ) + \gamma ^6 (\lambda (1 + \lambda - \lambda ^2)^2 (32 + \lambda (112 + \\ \lambda (76 + \lambda (-92 + \lambda (-97 + 4 \lambda (5 + 8 \lambda )))))) + (32 +\lambda (144 + \lambda (168 + \lambda (-128 \\ \quad + \lambda (-348 + \lambda (-41 + \lambda (244 + \lambda (73 + \lambda (-85 + 8 \lambda (-3 + 2 \lambda )))))))))) r \theta )) \end{array} \right\} }{2 A_2^2 ((-1 + \lambda ) \lambda + \gamma (-1 + (-1 + \lambda ) \lambda ))^2 (A_{1})^2}\\{} & {} \frac{\partial d_{1n}^{bs*}}{\partial \gamma }=\frac{\left\{ \begin{array}{l} \gamma \lambda ^3 (\gamma + \lambda + \gamma \lambda - (1 + \gamma ) \lambda ^2)^2 (8 (-1 + \lambda ) \lambda ^3 + 8 \gamma ^2 \lambda (1 + 2 \lambda ) (-3 + 2 \lambda ^2) + 4 \gamma \lambda ^2 (-6 \\ \quad + \lambda (-3 + 8 \lambda )) + \gamma ^3 (-8 + \lambda (2 + \lambda ) (-14 + \lambda (-1 + \\ 8 \lambda )))) + \lambda (16 \gamma ^6 + 48 \gamma ^5 (2 + \gamma ) \lambda - 4 \gamma ^4 (-60 + (-48 + \gamma ) \gamma ) \lambda ^2 - 4 \gamma ^3 (-80 \\ \quad + \gamma (-60 + \gamma (44 + 29 \gamma ))) \lambda ^3 - 4 \gamma ^2 (-60 + \gamma ^2 (154 + \gamma (106 + \\ 11 \gamma ))) \lambda ^4 + \gamma (96 + \gamma (-240 + \gamma (-784 + \gamma (-400 + \gamma (144 + 95 \gamma ))))) \lambda ^5 \\ \quad + 4 (1 + \gamma )^2 (4 + \gamma (-56 + \gamma (19 + \gamma (60 + 7 \gamma )))) \lambda ^6 - (1 + \gamma )^2 (48 + \\ \gamma (-128 + \gamma (-196 + 3 \gamma (8 + 13 \gamma )))) \lambda ^7 - (1 + \gamma )^2 (-48 \\ \quad + \gamma (-32 + \gamma (76 + \gamma (56 + \gamma )))) \lambda ^8 + 4 (1 + \gamma )^3 (-4 + (-1 + \gamma ) \gamma (4 + \gamma )) \lambda ^9) r \theta \end{array} \right\} }{2 A_2^2 ((-1 + \lambda ) \lambda + \gamma (-1 + (-1 + \lambda ) \lambda ))^2 (4 (-1 + \lambda ) \lambda ^2 + \gamma ^2 (-2 + \lambda ) (2 + 3 \lambda ) + 4 \gamma \lambda (-2 + \lambda ^2))^2}\\{} & {} \frac{\partial d_{2n}^{bs*}}{\partial \gamma }=\frac{\left\{ \begin{array}{l} \lambda (8 (-1 + \lambda )^2 \lambda ^4 (\lambda - \lambda ^2 + 2 r \theta ) - 16 \gamma (-1 + \lambda ) \lambda ^3 (2 \lambda \\ \quad + \lambda ^3 (-5 + 3 \lambda ) + (4 + \lambda - 4 \lambda ^2 + \lambda ^3) r \theta ) + 2 \gamma ^2 \lambda ^2 (-(-1 + \lambda ) \lambda (24 + \lambda (48 + \lambda (-49 + \\ \lambda (-63 + 44 \lambda )))) + 4 (12 + \lambda (6 - \lambda (23 + \lambda (4 + \lambda (-16 + 5 \lambda ))))) r \theta ) + 4 \gamma ^3 \lambda (-(-1 + \lambda ) \lambda (-1 + (-1\\ \quad + \lambda ) \lambda ) (-8 + \lambda (-24 + \lambda (-3 + 16 \lambda ))) +\\ 2 (8 + \lambda (14 + \lambda (-8 + \lambda (-20 + \lambda (5 + 2 (5 - 2 \lambda ) \lambda ))))) r \theta ) + \gamma ^4 (-2 \lambda (1 + \lambda - \lambda ^2)^2 (-4 + \lambda (-12 + \lambda + 8 \lambda ^2))\\ \quad + (16 + \lambda (48 + \lambda (24 + \lambda (-48 +\\ \lambda (-39 - 8 (-3 + \lambda ) \lambda (1 + \lambda )))))) r \theta )) \end{array} \right\} }{2 ((-1 + \lambda ) \lambda + \gamma (-1 + (-1 + \lambda ) \lambda ))^2 (4 (-1 + \lambda ) \lambda ^2 + \gamma ^2 (-2 + \lambda ) (2 + 3 \lambda ) + 4 \gamma \lambda (-2 + \lambda ^2))^2}\\{} & {} \frac{\partial d_{s}^{bs*}}{\partial \gamma }=\frac{\left\{ \begin{array}{l} 8 (-1 + \lambda )^2 \lambda ^6 (-(-1 + \lambda ) \lambda (-4 + 3 \lambda ) - 2 (2 + (-2 + \lambda ) \lambda ) r \theta ) \\ \quad + 16 \gamma (-1 + \lambda ) \lambda ^5 (-(-1 + \lambda ) \lambda (12 + \lambda (-2 + \lambda (-17 + 8 \lambda ))) + (12 - \lambda (8 + \\ \lambda (11 + \lambda (-14 + 5 \lambda )))) r \theta ) + 2 \gamma ^2 \lambda ^4 (-(-1 + \lambda ) \lambda (-240 + \lambda (-100 + \lambda (610 + \lambda - 419 \lambda ^2 + 144 \lambda ^3))) - 4 (60 + \lambda (-20 + \lambda (-133 + \lambda (89 +\\ \lambda (61 + \lambda (-76 + 21 \lambda )))))) r \theta ) + 4 \gamma ^3 \lambda ^3 (-(-1 \\ \quad + \lambda ) \lambda (-160 + \lambda (-320 + \lambda (220 + \lambda (524 + \lambda (-167 + 4 \lambda (-59 + 22 \lambda )))))) - 2 (80 + (-2 + \\ \lambda ) \lambda (-40 + \lambda (76 + \lambda (94 + \lambda (-52 + \lambda (-35 + 24 \lambda )))))) r \theta ) + \gamma ^4 \lambda ^2 (\lambda (-480 + \lambda (-1240 + \lambda (640 \\ \quad + \lambda (2996 + \lambda (-283 + \lambda (-2604 + \lambda (329 + \\ 4 (213 - 62 \lambda ) \lambda ))))))) + (-480 + \lambda (-1120\\ \quad + \lambda (384 + \lambda (2000 + \lambda (-108 + \lambda (-1418 + \lambda (173 + 8 (53 - 16 \lambda ) \lambda ))))))) r \theta ) + \gamma ^6 (-\lambda (1 + \lambda - \\ \lambda ^2)^2 (32 + \lambda (120 + \lambda (116 + \lambda (-38 + \lambda (-93 + 2 \lambda (-7 + 8 \lambda )))))) \\ \quad - (-2 + (-2 + \lambda ) \lambda ) (-16 + \lambda (-64 + \lambda (-68 + \lambda (32 + \lambda (84 + \lambda (8 + \\ \lambda (-37 + 8 (-1 + \lambda ) \lambda ))))))) r \theta ) + 2 \gamma ^5 \lambda (-\lambda (-1 + (-1 + \lambda ) \lambda ) (-96 \\ \quad + \lambda (-304 + \lambda (-96 + \lambda (440 + \lambda (255 + \lambda (-215 + 8 \lambda (-13 + 6 \lambda ))))))) - \\ (96 + \lambda (352 + \lambda (248 + \lambda (-424 + \lambda (-484 \\ \quad + \lambda (217 + \lambda (298 + \lambda (-77 + 4 \lambda (-19 + 6 \lambda ))))))))) r \theta ) \end{array} \right\} }{2 A_2^2 ((-1 + \lambda ) \lambda + \gamma (-1 + (-1 + \lambda ) \lambda ))^2 (4 (-1 + \lambda ) \lambda ^2 + \gamma ^2 (-2 + \lambda ) (2 + 3 \lambda ) + 4 \gamma \lambda (-2 + \lambda ^2))^2}\\{} & {} \frac{\partial \pi _{1}^{bs*}}{\partial \gamma }=\frac{\left\{ \begin{array}{l} \lambda (16 (-1 + \lambda )^2 \lambda ^6 (2 (-1 + \lambda ) \lambda + (-2 + \lambda ) r \theta ) + 16 \gamma (-1 + \lambda ) \lambda ^5 ((-1 + \lambda ) \lambda (-12 + \lambda (-3 + 10 \lambda )) \\ \quad + (12 + \lambda (-2 + \lambda (-14 + 5 \lambda ))) r \theta - \\ 2 (-1 + \lambda ) r^2 \theta ^2) + 4 \gamma ^2 (-1 + \lambda ) \lambda ^4 (\lambda (120 + \lambda (60 + \lambda (-209 + \lambda (-33 + 80 \lambda )))) \\ \quad + 2 (60 + \lambda (70 + \lambda (-73 + 5 \lambda (-9 + 4 \lambda )))) r \theta + 4 (10 - \\ 7 \lambda ^2) r^2 \theta ^2) + 4 \gamma ^3 \lambda ^3 (\lambda (-160 + \lambda (-120 + \lambda (436 + \lambda (156 \\ \quad + \lambda (-387 + \lambda (-11 + 80 \lambda )))))) + (-160 + \lambda (-240 + \lambda (344 + \lambda (348 + \lambda (-264 + \\ \lambda (-79 + 40 \lambda )))))) r \theta - 2 (40 + \lambda ^2 (-61 + \lambda (7 + 16 \lambda ))) r^2 \theta ^2) + \gamma ^4 \lambda ^2 (\lambda (-480 + \lambda (-960 \\ \quad + \lambda (856 + \lambda (1936 + \lambda (-741 + \lambda (-1207 + 4 \lambda (83 + \\ 40 \lambda ))))))) + (-480 + \lambda (-1360 + \lambda (144 + \lambda (2240 + \lambda (176 \\ \quad + \lambda (-1091 + 76 \lambda + 80 \lambda ^2)))))) r \theta - 4 (80 + \lambda (80 + (-2 + \lambda ) \lambda (59 + 10 \lambda (7 + \\ \lambda )))) r^2 \theta ^2) + 2 \gamma ^5 \lambda (\lambda (-96 + \lambda (-312 + \lambda (-56 + \lambda (608 + \lambda (277 + \lambda (-454 \\ \quad + \lambda (-167 + 2 \lambda (63 + 8 \lambda )))))))) + (-96 + \lambda (-400 + \lambda (-304 + \\ \lambda (512 + \lambda (520 + \lambda (-273 + \lambda (-199 + 78 \lambda + 8 \lambda ^2))))))) r \theta \\ \quad + 2 (-40 + \lambda (-80 + \lambda (22 + \lambda (92 + \lambda (-4 + \lambda (-27 + 4 \lambda )))))) r^2 \theta ^2) + \gamma ^6 (\lambda (-32 + \\ \lambda (-144 + \lambda (-140 + \lambda (208 + \lambda (359 + \lambda (-65 + \lambda (-250 + \lambda (-3 + 56 \lambda )))))))) + (-32 + \lambda (-176 + \lambda (-264 + \lambda (80 + \lambda (408 + \lambda (69 + \\ \lambda (-216 + \lambda (-27 + 44 \lambda )))))))) r \theta \\ \quad + (-32 + \lambda (-96 + \lambda (-40 + \lambda (100 + \lambda (56 + \lambda (-43 + 4 \lambda (-3 + 2 \lambda ))))))) r^2 \theta ^2)) \end{array} \right\} }{A_2^2 (4 (-1 + \lambda ) \lambda ^2 + \gamma ^2 (-2 + \lambda ) (2 + 3 \lambda ) + 4 \gamma \lambda (-2 + \lambda ^2))^3}\\{} & {} \frac{\partial \pi _{2}^{bs*}}{\partial \gamma }=\frac{\left\{ \begin{array}{l} \lambda (16 (-1 + \lambda )^2 \lambda ^5 (2 (-1 + \lambda ) \lambda + (-2 + \lambda ) r \theta ) + g^5 (\lambda (-1 + (-1 + \lambda ) \lambda ) (32 + \lambda (120 + \lambda (108 + \lambda (-70 \\ \quad + \lambda (-115 + 4 \lambda (1 + 8 \lambda )))))) + \\ (8 + 16 \lambda + \lambda ^3 (-12 + \lambda (-3 + 4 \lambda ))) (-4 + \lambda (-8 + \lambda (-1 + 4 \lambda ))) r \theta ) + 8 g (-1 + \lambda ) \lambda ^4 ((-1\\ \quad + \lambda ) \lambda (-20 + \lambda (-11 + 20 \lambda )) + 2 (10 + \lambda (-2 +\\ \lambda (-11 + 5 \lambda ))) r \theta ) + 4 g^2 \lambda ^3 ((-1 + \lambda ) \lambda (80 + \lambda (88 + \lambda (-139 + \lambda (-89 + 80 \lambda ))))\\ \quad + 2 (-40 + \lambda (-4 + \lambda (85 + \lambda (-13 + 10 \lambda (-5 + 2 \lambda ))))) r \theta ) + \\ 2 g^3 \lambda ^2 (\lambda (-160 + \lambda (-264 + \lambda (354 + \lambda (517 + \lambda (-349 + 10 \lambda (-27 + 16 \lambda )))))) + 4 (-40 + \lambda (-56 \\ \quad + \lambda (67 + 2 \lambda (43 + \lambda (-25 + \lambda (-19 + \\ 10 \lambda )))))) r \theta ) + g^4 \lambda (\lambda (-160 + \lambda (-512 + \lambda (-124 + \lambda (876 + \lambda (431 + \lambda (-569 + 4 \lambda (-51 + 40 \lambda ))))))) + (-160 \\ \quad + \lambda (-432 + \lambda (-72 + \lambda (584 + \\ \lambda (252 + \lambda (-309 + 16 \lambda (-7 + 5 \lambda ))))))) r \theta )) (4 (-1 + \lambda ) \lambda ^3 (-1 + \lambda + r \theta ) + 2 \gamma \lambda ^2 (6 - 4 r \theta + \lambda (-3 - 2 r \theta + \lambda (-7 + 4 \lambda + 4 r \theta ))) + \gamma ^3 (4 - \\ \lambda (2 (-5 + r \theta ) \\ \quad + \lambda (-3 + 2 r \theta + \lambda (5 + \lambda - r \theta )))) + \gamma ^2 \lambda (12 - 4 r \theta + \lambda (12 - 10 r \theta + \lambda (-15 + r \theta + \lambda (-7 + 4 \lambda + 4 r \theta ))))) \end{array} \right\} }{4 (g + \lambda + g \lambda )^2 ((-1 + \lambda ) \lambda + \gamma (-1 + (-1 + \lambda ) \lambda ))^2 (4 (-1 + \lambda ) \lambda ^2 + g^2 (-2 + \lambda ) (2 + 3 \lambda ) + 4 \gamma \lambda (-2 + \lambda ^2))^3}\\ \end{aligned}$$

Based on the above results, we can easily obtain the findings in Proposition 5. Note that \(\gamma _{1}\) and \(\gamma _{1}\) are the third and fourth root of \(16 \lambda ^6 - 48 \lambda ^7 + 48 \lambda ^8 - 16 \lambda ^9 + (96 \lambda ^5 - 192 \lambda ^6 + 24 \lambda ^7 + 152 \lambda ^8 - 88 \lambda ^9 + 8 \lambda ^{10}) \gamma + (240 \lambda ^4 - 240 \lambda ^5 - 396 \lambda ^6 + 456 \lambda ^7 + 100 \lambda ^8 - 208 \lambda ^9 + 48 \lambda ^{10}) \gamma ^2 + (320 \lambda ^3 - 864 \lambda ^5 + 136 \lambda ^6 + 768 \lambda ^7 - 216 \lambda ^8 - 248 \lambda ^9 + 104 \lambda ^{10}) \gamma ^3 + (240 \lambda ^2 + 240 \lambda ^3 - 696 \lambda ^4 - 568 \lambda ^5 + 776 \lambda ^6 + 460 \lambda ^7 - 419 \lambda ^8 - 141 \lambda ^9 + 104 \lambda ^{10}) \gamma ^4 + (96 \lambda + 192 \lambda ^2 - 216 \lambda ^3 - 576 \lambda ^4 + 88 \lambda ^5 + 582 \lambda ^6 + 42 \lambda ^7 - 262 \lambda ^8 - 26 \lambda ^9 + 48 \lambda ^{10}) \gamma ^5 + (16 + 48 \lambda - 12 \lambda ^2 - 160 \lambda ^3 - 108 \lambda ^4 + 122 \lambda ^5 + 130 \lambda ^6 - 34 \lambda ^7 - 55 \lambda ^8 + 3 \lambda ^9 + 8 \lambda ^{10}) \gamma ^6=0\), respectively; \(\theta _{1}=(8 \gamma ^6 \lambda ^2 + 40 \gamma ^5 \lambda ^3 + 44 \gamma ^6 \lambda ^3 + 80 \gamma ^4 \lambda ^4 + 152 \gamma ^5 \lambda ^4 + 64 \gamma ^6 \lambda ^4 + 80 \gamma ^3 \lambda ^5 + 168 \gamma ^4 \lambda ^5 + 56 \gamma ^5 \lambda ^5 - 27 \gamma ^6 \lambda ^5 + 40 \gamma ^2 \lambda ^6 + 32 \gamma ^3 \lambda ^6 - 192 \gamma ^4 \lambda ^6 - 286 \gamma ^5 \lambda ^6 - 102 \gamma ^6 \lambda ^6 + 8 \gamma \lambda ^7 - 52 \gamma ^2 \lambda ^7 - 272 \gamma ^3 \lambda ^7 - 351 \gamma ^4 \lambda ^7 - 144 \gamma ^5 \lambda ^7 - 5 \gamma ^6 \lambda ^7 - 24 \gamma \lambda ^8 - 64 \gamma ^2 \lambda ^8 + 40 \gamma ^3 \lambda ^8 + 230 \gamma ^4 \lambda ^8 + 204 \gamma ^5 \lambda ^8 + 54 \gamma ^6 \lambda ^8 + 24 \gamma \lambda ^9 + 124 \gamma ^2 \lambda ^9 + 224 \gamma ^3 \lambda ^9 + 173 \gamma ^4 \lambda ^9 + 50 \gamma ^5 \lambda ^9 + \gamma ^6 \lambda ^9 - 8 \gamma \lambda ^10 - 48 \gamma ^2 \lambda ^10 - 104 \gamma ^3 \lambda ^10 - 104 \gamma ^4 \lambda ^10 - 48 \gamma ^5 \lambda ^10 - 8 \gamma ^6 \lambda ^10)/(16 \gamma ^6 + 96 \gamma ^5 \lambda + 48 \gamma ^6 \lambda + 240 \gamma ^4 \lambda ^2 + 192 \gamma ^5 \lambda ^2 - 4 \gamma ^6 \lambda ^2 + 320 \gamma ^3 \lambda ^3 + 240 \gamma ^4 \lambda ^3 - 176 \gamma ^5 \lambda ^3 - 116 \gamma ^6 \lambda ^3 + 240 \gamma ^2 \lambda ^4 - 616 \gamma ^4 \lambda ^4 - 424 \gamma ^5 \lambda ^4 - 44 \gamma ^6 \lambda ^4 + 96 \gamma \lambda ^5 - 240 \gamma ^2 \lambda ^5 - 784 \gamma ^3 \lambda ^5 - 400 \gamma ^4 \lambda ^5 + 144 \gamma ^5 \lambda ^5 + 95 \gamma ^6 \lambda ^5 + 16 \lambda ^6 - 192 \gamma \lambda ^6 - 356 \gamma ^2 \lambda ^6 + 168 \gamma ^3 \lambda ^6 + 584 \gamma ^4 \lambda ^6 + 296 \gamma ^5 \lambda ^6 + 28 \gamma ^6 \lambda ^6 - 48 \lambda ^7 + 32 \gamma \lambda ^7 + 404 \gamma ^2 \lambda ^7 + 496 \gamma ^3 \lambda ^7 + 109 \gamma ^4 \lambda ^7 - 102 \gamma ^5 \lambda ^7 - 39 \gamma ^6 \lambda ^7 + 48 \lambda ^8 + 128 \gamma \lambda ^8 + 36 \gamma ^2 \lambda ^8 - 176 \gamma ^3 \lambda ^8 - 189 \gamma ^4 \lambda ^8 - 58 \gamma ^5 \lambda ^8 - \gamma ^6 \lambda ^8 - 16 \lambda ^9 - 64 \gamma \lambda ^9 - 84 \gamma ^2 \lambda ^9 - 24 \gamma ^3 \lambda ^9 + 32 \gamma ^4 \lambda ^9 + 24 \gamma ^5 \lambda ^9 + 4 \gamma ^6 \lambda ^9)\); \(r_{1}=(8 \gamma ^6 \lambda ^2 + 40 \gamma ^5 \lambda ^3 + 44 \gamma ^6 \lambda ^3 + 80 \gamma ^4 \lambda ^4 + 152 \gamma ^5 \lambda ^4 + 64 \gamma ^6 \lambda ^4 + 80 \gamma ^3 \lambda ^5 + 168 \gamma ^4 \lambda ^5 + 56 \gamma ^5 \lambda ^5 - 27 \gamma ^6 \lambda ^5 + 40 \gamma ^2 \lambda ^6 + 32 \gamma ^3 \lambda ^6 - 192 \gamma ^4 \lambda ^6 - 286 \gamma ^5 \lambda ^6 - 102 \gamma ^6 \lambda ^6 + 8 \gamma \lambda ^7 - 52 \gamma ^2 \lambda ^7 - 272 \gamma ^3 \lambda ^7 - 351 \gamma ^4 \lambda ^7 - 144 \gamma ^5 \lambda ^7 - 5 \gamma ^6 \lambda ^7 - 24 \gamma \lambda ^8 - 64 \gamma ^2 \lambda ^8 + 40 \gamma ^3 \lambda ^8 + 230 \gamma ^4 \lambda ^8 + 204 \gamma ^5 \lambda ^8 + 54 \gamma ^6 \lambda ^8 + 24 \gamma \lambda ^9 + 124 \gamma ^2 \lambda ^9 + 224 \gamma ^3 \lambda ^9 + 173 \gamma ^4 \lambda ^9 + 50 \gamma ^5 \lambda ^9 + \gamma ^6 \lambda ^9 - 8 \gamma \lambda ^10 - 48 \gamma ^2 \lambda ^10 - 104 \gamma ^3 \lambda ^10 - 104 \gamma ^4 \lambda ^10 - 48 \gamma ^5 \lambda ^10 - 8 \gamma ^6 \lambda ^10)/(16 \gamma ^6 \theta + 96 \gamma ^5 \theta \lambda + 48 \gamma ^6 \theta \lambda + 240 \gamma ^4 \theta \lambda ^2 + 192 \gamma ^5 \theta \lambda ^2 - 4 \gamma ^6 \theta \lambda ^2 + 320 \gamma ^3 \theta \lambda ^3 + 240 \gamma ^4 \theta \lambda ^3 - 176 \gamma ^5 \theta \lambda ^3 - 116 \gamma ^6 \theta \lambda ^3 + 240 \gamma ^2 \theta \lambda ^4 - 616 \gamma ^4 \theta \lambda ^4 - 424 \gamma ^5 \theta \lambda ^4 - 44 \gamma ^6 \theta \lambda ^4 + 96 \gamma \theta \lambda ^5 - 240 \gamma ^2 \theta \lambda ^5 - 784 \gamma ^3 \theta \lambda ^5 - 400 \gamma ^4 \theta \lambda ^5 + 144 \gamma ^5 \theta \lambda ^5 + 95 \gamma ^6 \theta \lambda ^5 + 16 \theta \lambda ^6 - 192 \gamma \theta \lambda ^6 - 356 \gamma ^2 \theta \lambda ^6 + 168 \gamma ^3 \theta \lambda ^6 + 584 \gamma ^4 \theta \lambda ^6 + 296 \gamma ^5 \theta \lambda ^6 + 28 \gamma ^6 \theta \lambda ^6 - 48 \theta \lambda ^7 + 32 \gamma \theta \lambda ^7 + 404 \gamma ^2 \theta \lambda ^7 + 496 \gamma ^3 \theta \lambda ^7 + 109 \gamma ^4 \theta \lambda ^7 - 102 \gamma ^5 \theta \lambda ^7 - 39 \gamma ^6 \theta \lambda ^7 + 48 \theta \lambda ^8 + 128 \gamma \theta \lambda ^8 + 36 \gamma ^2 \theta \lambda ^8 - 176 \gamma ^3 \theta \lambda ^8 - 189 \gamma ^4 \theta \lambda ^8 - 58 \gamma ^5 \theta \lambda ^8 - \gamma ^6 \theta \lambda ^8 \ - 16 \theta \lambda ^9 - 64 \gamma \theta \lambda ^9 - 84 \gamma ^2 \theta \lambda ^9 - 24 \gamma ^3 \theta \lambda ^9 + 32 \gamma ^4 \theta \lambda ^9 + 24 \gamma ^5 \theta \lambda ^9 + 4 \gamma ^6 \theta \lambda ^9)\) \(\Box\)

Proposition 6:

In equilibrium, we have

$$\begin{aligned}{} & {} \frac{\partial p_{1}^{bs*}}{\partial \lambda }=\frac{\left\{ \begin{array}{l} 2 \gamma (\gamma (8 \gamma ^2 + 2 \gamma (8 + 7 \gamma ) \lambda + (8 - \gamma (2 + 11 \gamma )) \lambda ^2 - 16 (1 + \gamma )^2 \lambda ^3 \\ \quad + (1 + \gamma ) (7 + 6 \gamma ) \lambda ^4) - (4 \gamma ^2 + 2 \gamma (2 + \gamma )^2 \lambda + (-2 + \gamma )^2 (1 + \gamma ) \lambda ^2 - 8 (1 + \\ \gamma )^2 \lambda ^3 + 4 (1 + \gamma )^2 \lambda ^4) r \theta ) \end{array} \right\} }{(A_{1})^2}\\{} & {} \frac{\partial p_{2}^{bs*}}{\partial \lambda }=\frac{\left\{ \begin{array}{l} -16 (-1 + \lambda )^2 \lambda ^6 - 8 \gamma ^2 \lambda ^3 (\lambda (27 + \lambda (6 + \lambda (-46 + 3 \lambda (1 + 4 \lambda )))) \\ \quad + (-1 + \lambda ) (-8 + \lambda (-3 + 7 \lambda )) r \theta ) + 2 \gamma ^3 \lambda ^2 (-\lambda (112 + \lambda (192 + \lambda (-152 + \lambda (-199 + \\ 4 \lambda (17 + 8 \lambda ))))) - 4 (12 + \lambda (10 + (-2 + \lambda ) \lambda (11 + 9 \lambda ))) r \theta )\\ \quad + \gamma ^4 \lambda (-\lambda (96 + \lambda (384 + \lambda (170 + \lambda (-372 + \lambda (-159 + 8 \lambda (13 + 2 \lambda )))))) - 2 (32 + \\ \lambda (80 + \lambda (-16 - 83 \lambda + 20 \lambda ^3))) r \theta ) + \gamma ^5 (-2 \lambda ^2 (48 + \lambda (98 + \lambda (11 + \lambda (-57 \\ \quad + 2 \lambda (-5 + 6 \lambda ))))) - (16 + \lambda (80 + \lambda (64 + \lambda (-52 + \lambda (-41 + 8 \lambda (1 + \\ \lambda )))))) r \theta ) - 16 \gamma (-1 + \lambda ) \lambda ^4 (4 \lambda ^3 - r \theta + \lambda (-6 + r \theta )) + \gamma ^6 (8 - 8 r \theta + \lambda (16 - 16 r \theta \\ \quad + \lambda (-2 (5 + r \theta ) + \lambda (4 (-9 + r \theta ) + \lambda (\lambda (-2 + 3 \lambda ) - 5 (4 + r \theta )))))) \end{array} \right\} }{2 A_2^2 (4 (-1 + \lambda ) \lambda ^2 + \gamma ^2 (-2 + \lambda ) (2 + 3 \lambda ) + 4 \gamma \lambda (-2 + \lambda ^2))^2}\\{} & {} \frac{\partial p_{s}^{bs*}}{\partial \lambda }=\frac{\left\{ \begin{array}{l} \gamma (-16 (-1 + \lambda ) ^2 \lambda ^6 (2 + (-4 + \lambda ) \lambda ) r \theta + 8 \gamma (-1 + \lambda ) \lambda ^5 ((-2 + \lambda ) (-1 + \lambda ) \lambda (-2 + 3 \lambda ) - 2 (-12 \\ \quad + \lambda (19 + \lambda (15 - 26 \lambda + 6 \lambda ^2))) r \theta ) + 4 \gamma ^2 \lambda ^4 (\lambda (48 - \\ 116 \lambda + \lambda ^3 (187 + 7 \lambda (-22 + 5 \lambda ))) - 2 (60 + \lambda (-68 + \lambda (-177 + \lambda (202 \\ \quad + \lambda (90 + \lambda (-139 + 30 \lambda )))))) r \theta ) + 4 \gamma ^3 \lambda ^3 (\lambda (120 + \lambda (-100 + \lambda (-395 + \\ \lambda (388 + \lambda (251 - 352 \lambda + 86 \lambda ^2))))) + (-160 + \lambda (-60 + \lambda (684 + \lambda (119 + \lambda (-822 \\ \quad + \lambda (37 + 8 (39 - 10 \lambda ) \lambda )))))) r \theta ) + \gamma ^4 \lambda ^2 (4 \lambda (160 + \lambda (120 + \\ \lambda (-660 + \lambda (-280 + \lambda (902 + \lambda (55 + 2 \lambda (-214 + 57 \lambda ))))))) + (-480 + \lambda (-960 + \lambda (1664 + \lambda (3120 \\ \quad + \lambda (-1652 + \lambda (-2712 + \lambda (837 + 16 (47 - \\ 15 \lambda ) \lambda ))))))) r \theta ) + \gamma ^7 ((1 + \lambda - \lambda ^2)^2 (32 + \lambda (112 + \lambda (68 + \lambda (-128 \\ \quad + \lambda (-153 + 8 \lambda (-2 + 3 \lambda )))))) - (16 + \lambda (48 + \lambda (4 + \lambda (-96 + \lambda (-52 + \lambda (46 + \\ \lambda (10 + \lambda (-16 + 7 \lambda )))))))) r \theta ) + \gamma ^6 (2 \lambda (-1 + (-1 + \lambda ) \lambda ) (-96 + \lambda (-280 \\ \quad + \lambda (32 + \lambda (622 + \lambda (251 + \lambda (-357 + 2 \lambda (-71 + 35 \lambda ))))))) - (32 + \\ \lambda (224 + \lambda (280 + \lambda (-416 + \lambda (-828 + \lambda (46 + \lambda (520 + \lambda (56 + \lambda (-111 + 8 \lambda (-3 + 2 \lambda )))))))))) r \theta )\\ \quad + \gamma ^5 \lambda (-192 r \theta + \lambda (480 - 752 r \theta + \lambda (1120 + \\ \lambda (200 (-6 + 11 r \theta ) + \lambda (8 (-439 + 140 r \theta ) + \lambda (951 - 1750 r \theta + \lambda (3442 - 920 r \theta \\ \quad + \lambda (-645 + 567 r \theta + 8 \lambda (-146 + 43 \lambda + 4 (7 - 3 \lambda ) r \theta )))))))))) \end{array} \right\} }{2 A_2^2 ((-1 + \lambda ) \lambda + \gamma (-1 + (-1 + \lambda ) \lambda ))^2 (4 (-1 + \lambda ) \lambda ^2 + \gamma ^2 (-2 + \lambda ) (2 + 3 \lambda ) + 4 \gamma \lambda (-2 + \lambda ^2))^2}\\{} & {} \frac{\partial d_{1n}^{bs*}}{\partial \lambda }=\frac{\left\{ \begin{array}{l} \gamma (16 (-1 + \lambda )^2 \lambda ^6 (-1 + 2 \lambda ) r \theta + 4 \gamma (-1 + \lambda ) \lambda ^5 (-(-1 + \lambda ) \lambda ^3 \\ \quad + 4 (1 + \lambda ) (-1 + 2 \lambda ) (-6 + 5 \lambda ) r \theta ) + 4 \gamma ^2 \lambda ^4 (-2 (\lambda ^2 + \lambda ^4 - 5 \lambda ^5 + 3 \lambda ^6) + \\ (-1 + 2 \lambda ) (60 + \lambda (24 + \lambda (-111 + \lambda (-8 + 39 \lambda )))) r \theta ) + \gamma ^7 (-\lambda (2 \\ \quad + 5 \lambda ) (-1 + (-1 + \lambda ) \lambda )^2 (4 + \lambda (6 + \lambda )) - (-2 + (-2 + \lambda ) \lambda ) (-8 + \\ \lambda (-12 + \lambda (24 + \lambda (42 + \lambda (-4 + 3 (-6 + \lambda ) \lambda ))))) r \theta ) + 4 \gamma ^3 \lambda ^3 (-\lambda ^2 (10 + \lambda (2 \\ \quad + \lambda (-6 + \lambda - 20 \lambda ^2 + 14 \lambda ^3))) + 2 (-40 + \lambda (10 + \lambda (193 + \\ \lambda (-23 + \lambda (-190 + \lambda (29 + 36 \lambda )))))) r \theta ) + \gamma ^4 \lambda ^2 (-8 \lambda ^2 (10 + \lambda (14 + \lambda (-14 + \lambda (-5 + \lambda \\ \quad - 10 \lambda ^2 + 8 \lambda ^3)))) + (-240 + \lambda (-320 + \lambda (1336 + \\ \lambda (1416 + \lambda (-1448 + \lambda (-1000 + \lambda (493 + 112 \lambda ))))))) r \theta ) + \gamma ^5 \lambda (-\lambda ^2 (80 + \lambda (228 + \lambda (8 \\ \quad + \lambda (-251 + \lambda (14 + \lambda (21 + 4 \lambda (-10 + 9 \lambda ))))))) + \\ (-96 + \lambda (-336 + \lambda (384 + \lambda (1544 + \lambda (128 + \lambda (-1282 + \lambda (-136 + 287 \lambda ))))))) r \theta ) + \gamma ^6 (-2 \lambda ^2 (-1 + (-1\\ \quad + \lambda ) \lambda ) (-20 + \lambda (-68 + \lambda (-36 + \\ \lambda (39 + 13 \lambda + 4 \lambda ^3)))) - (16 + \lambda (128 + \lambda (68 + \lambda (-528 + \lambda (-580 + \lambda (310 + \lambda (392 \\ \quad + \lambda (-96 + \lambda (-51 + 8 \lambda ))))))))) r \theta )) \end{array} \right\} }{2 A_2^2 ((-1 + \lambda ) \lambda + \gamma (-1 + (-1 + \lambda ) \lambda ))^2 (4 (-1 + \lambda ) \lambda ^2 + \gamma ^2 (-2 + \lambda ) (2 + 3 \lambda ) + 4 \gamma \lambda (-2 + \lambda ^2))^2}\\{} & {} \frac{\partial d_{2n}^{bs*}}{\partial \lambda }=\frac{\left\{ \begin{array}{l} 2 \gamma (\gamma + \lambda + \gamma \lambda - (1 + \gamma ) \lambda ^2)^2 (4 \lambda ^4 + 4 \gamma \lambda ^2 (1 + \lambda (2 + 3 \lambda )) + \gamma ^3 (4 + \lambda (16 + 11 \lambda )) + 4 \gamma ^2 \lambda (2\\ \quad + \lambda (5 + 2 \lambda (1 + \lambda )))) + (-8 \gamma ^5 (2 + \gamma ) - 16 \gamma ^4 (1 + \\ \gamma ) (4 + \gamma ) \lambda - 2 \gamma ^3 (48 + \gamma (88 + \gamma (44 + 5 \gamma ))) \lambda ^2 - 4 \gamma ^2 (1 \\ \quad + \gamma ) (16 + \gamma (20 + \gamma (4 + 3 \gamma ))) \lambda ^3 + \gamma (1 + \gamma ) (-16 - 40 \gamma + 22 \gamma ^3 + \gamma ^4) \lambda ^4 + 4 \gamma (1 + \\ \gamma )^2 (-8 + \gamma (2 + \gamma ) (4 + 3 \gamma )) \lambda ^5 - (1 + \gamma )^2 (16 + \gamma (-48 - 64 \gamma \\ \quad + 3 \gamma ^3)) \lambda ^6 - 8 (1 + \gamma )^3 (-4 + \gamma ^2) \lambda ^7 - 16 (1 + \gamma )^4 \lambda ^8) r \theta \end{array} \right\} }{2 ((-1 + \lambda ) \lambda + \gamma (-1 + (-1 + \lambda ) \lambda ))^2 (4 (-1 + \lambda ) \lambda ^2 + \gamma ^2 (-2 + \lambda ) (2 + 3 \lambda ) + 4 \gamma \lambda (-2 + \lambda ^2))^2}\\{} & {} \frac{\partial d_{s}^{bs*}}{\partial \lambda }=\frac{\left\{ \begin{array}{l} -16 (-1 + \lambda )^2 \lambda ^6 (2 + (-4 + \lambda ) \lambda ) r \theta + 8 \gamma \lambda ^5 ((-2 + \lambda ) (-1 + \lambda )^2 \lambda (-2 + 3 \lambda ) - 4 (6 - 15 \lambda + \lambda ^3 (23 \\ \quad + \lambda (-17 + 3 \lambda ))) r \theta ) + \gamma ^8 (-\lambda (2 + 5 \lambda ) (-1 + (-1 + \\ \lambda ) \lambda )^2 (4 + \lambda (6 + \lambda )) - (-2 + (-2 + \lambda ) \lambda ) (-8 + \lambda (-12 + \lambda (24 + \lambda (42 + \lambda (-4 + 3 (-6 + \lambda ) \lambda ))))) r \theta ) \\ \quad + 8 \gamma ^2 \lambda ^4 (\lambda (24 - 58 \lambda + \lambda ^3 (93 + \lambda (-76 + 17 \lambda ))) + \\ (-60 + \lambda (56 + \lambda (211 - \lambda (210 + \lambda (124 + 3 \lambda (-53 + 10 \lambda )))))) r \theta ) + 4 \gamma ^3 \lambda ^3 (\lambda (120 + \lambda (-100 + \lambda (-397 \\ \quad + \lambda (388 + \lambda (249 - 342 \lambda + 80 \lambda ^2))))) - \\ 2 (80 + \lambda (60 + \lambda (-390 + \lambda (-139 + \lambda (518 + \lambda (9 + 5 \lambda (-39 + 8 \lambda ))))))) r \theta ) + \gamma ^4 \lambda ^2 (8 \lambda (80 + \lambda (60 + \lambda (-335 \\ \quad + \lambda (-141 + \lambda (454 + \lambda (27 - 204 \lambda + \\ 50 \lambda ^2)))))) + (-480 + \lambda (-1280 + \lambda (1744 + \lambda (4664 + \lambda (-1836 + \lambda (-4232 + \lambda (1069 + 80 (13 - 3 \lambda ) \lambda ))))))) r \theta ) \\ \quad + \gamma ^5 \lambda (\lambda (1 + \lambda ) (480 + \lambda (640 + \\ \lambda (-1920 + \lambda (-1704 + \lambda (2767 + \lambda (715 + 8 \lambda (-171 + 35 \lambda ))))))) - 2 (96 \\ \quad + \lambda (496 + \lambda (160 + \lambda (-1768 + \lambda (-1268 + \lambda (1599 + 2 \lambda (480 + \lambda (-265 + \\ 12 \lambda (-7 + 2 \lambda ))))))))) r \theta ) + \gamma ^6 (\lambda (192 + \lambda (752 \\ \quad + \lambda (224 + \lambda (-2096 + \lambda (-1690 + \lambda (1707 + \lambda (1486 + \lambda (-591 + 8 \lambda (-48 + 13 \lambda ))))))))) - 2 (16 + \\ \lambda (160 + \lambda (308 + \lambda (-400 + \lambda (-1186 + \lambda (-41 + \lambda (901 + \lambda (96 + \lambda (-199 + 4 \lambda (-3 + 2 \lambda )))))))))) r \theta ) \\ \quad + \gamma ^7 (32 - 32 r \theta + \lambda (-176 (-1 + r \theta ) + \lambda (220 - \\ 72 r \theta + \lambda (8 (-43 + 78 r \theta ) + \lambda (-837 + 632 r \theta + \lambda (-4 (19 + 89 r \theta ) + \lambda (645 - 402 r \theta \\ \quad + \lambda (2 (95 + 56 r \theta ) + \lambda (-163 + 44 r \theta + 8 \lambda (-7 + 2 \lambda - r \theta )))))))))) \end{array} \right\} }{2 A_2^2 ((-1 + \lambda ) \lambda + \gamma (-1 + (-1 + \lambda ) \lambda ))^2 (4 (-1 + \lambda ) \lambda ^2 + \gamma ^2 (-2 + \lambda ) (2 + 3 \lambda ) + 4 \gamma \lambda (-2 + \lambda ^2))^2}\\{} & {} \frac{\partial \pi _{1}^{bs*}}{\partial \lambda }=\frac{\left\{ \begin{array}{l} \gamma (-32 \gamma ^7 - 192 \gamma ^6 \lambda - 144 \gamma ^7 \lambda - 480 \gamma ^5 \lambda ^2 - 624 \gamma ^6 \lambda ^2 - 132 \gamma ^7 \lambda ^2 - 640 \gamma ^4 \lambda ^3 - 960 \gamma ^5 \lambda ^3 \\ \quad - 64 \gamma ^6 \lambda ^3 + 260 \gamma ^7 \lambda ^3 - 480 \gamma ^3 \lambda ^4 - 480 \gamma ^4 \lambda ^4 + \\ 976 \gamma ^5 \lambda ^4 + 1468 \gamma ^6 \lambda ^4 + 483 \gamma ^7 \lambda ^4 - 192 \gamma ^2 \lambda ^5 + 240 \gamma ^3 \lambda ^5 + 1904 \gamma ^4 \lambda ^5 + 2416 \gamma ^5 \lambda ^5 \\ \quad + 998 \gamma ^6 \lambda ^5 + 54 \gamma ^7 \lambda ^5 - 32 \gamma \lambda ^6 + 336 \gamma ^2 \lambda ^6 + 1196 \gamma ^3 \lambda ^6 +\\ 1064 \gamma ^4 \lambda ^6 - 205 \gamma ^5 \lambda ^6 - 683 \gamma ^6 \lambda ^6 - 242 \gamma ^7 \lambda ^6 + 96 \gamma \lambda ^7 + 112 \gamma ^2 \lambda ^7 - 524 \gamma ^3 \lambda ^7 \\ \quad - 1364 \gamma ^4 \lambda ^7 - 1246 \gamma ^5 \lambda ^7 - 482 \gamma ^6 \lambda ^7 - 60 \gamma ^7 \lambda ^7 - 88 \gamma \lambda ^8 - \\ 356 \gamma ^2 \lambda ^8 - 536 \gamma ^3 \lambda ^8 - 321 \gamma ^4 \lambda ^8 + 12 \gamma ^5 \lambda ^8 + 95 \gamma ^6 \lambda ^8 + 30 \gamma ^7 \lambda ^8 \\ \quad + 24 \gamma \lambda ^9 + 108 \gamma ^2 \lambda ^9 + 188 \gamma ^3 \lambda ^9 + 156 \gamma ^4 \lambda ^9 + 60 \gamma ^5 \lambda ^9 + 8 \gamma ^6 \lambda ^9 + (-16 (-2 + \\ \gamma ) \gamma ^6 + 16 \gamma ^5 (12 + (4 - 3 \gamma ) \gamma ) \lambda - 8 \gamma ^4 (1 + \gamma ) (-60 \\ \quad + \gamma (2 + 3 \gamma )) \lambda ^2 + 4 \gamma ^3 (160 + \gamma (200 + \gamma (-44 + \gamma (-76 + 5 \gamma )))) \lambda ^3 - \gamma ^2 (-480 + \gamma (-400 + \\ \gamma (1184 + \gamma (1600 + \gamma (524 + 29 \gamma ))))) \lambda ^4 - 2 \gamma (1 + \gamma ) (-96 + \gamma (224 \\ \quad + \gamma (824 + \gamma (568 + 23 \gamma (4 + \gamma ))))) \lambda ^5 + (1 + \gamma ) (32 + \gamma (-368 + \gamma (-984 + \\ \gamma (-464 + \gamma (344 + \gamma (227 + \gamma )))))) \lambda ^6 + 4 (1 \\ \quad + \gamma )^2 (-24 + \gamma (4 + \gamma (120 + \gamma (117 + 23 \gamma )))) \lambda ^7 - 4 (1 + \gamma )^3 (-20 + \gamma (-36 + \gamma (-9 + 11 \gamma ))) \lambda ^8 - \\ 16 (1 + \gamma )^5 \lambda ^9) r \theta - \gamma (-2 \gamma ^2 (2 + \gamma ) - 2 \gamma (1 + \gamma ) (4 + \gamma ) \lambda \\ \quad + (-2 + \gamma ) (1 + \gamma ) (2 + \gamma ) \lambda ^2 + 4 (1 + \gamma )^2 \lambda ^3) (8 \gamma ^3 + 8 \gamma ^2 (3 + \gamma ) \lambda + 2 \gamma (12 + (2 - \\ 7 \gamma ) \gamma ) \lambda ^2 - 2 (1 \\ \quad + \gamma ) (2 + \gamma ) (-2 + 7 \gamma ) \lambda ^3 + 3 (1 + \gamma ) (-4 + (-4 + \gamma ) \gamma ) \lambda ^4) r^2 \theta ^2) \end{array} \right\} }{A_2^2 (4 (-1 + \lambda ) \lambda ^2 + \gamma ^2 (-2 + \lambda ) (2 + 3 \lambda ) + 4 \gamma \lambda (-2 + \lambda ^2))^3}\\{} & {} \frac{\partial \pi _{2}^{bs*}}{\partial \lambda }=-\frac{\left\{ \begin{array}{l} (-4 (-1 + \lambda ) \lambda ^3 (-1 + \lambda + r \theta ) + 2 \gamma \lambda ^2 (-6 + 4 r \theta + \lambda (3 + 2 r \theta \\ \quad + \lambda (7 - 4 \lambda - 4 r \theta ))) + \gamma ^3 (-4 + \lambda (2 (-5 + r \theta ) + \lambda (-3 + 2 r \theta + \lambda (5 + \lambda - r \theta )))) - \\ \gamma ^2 \lambda (12 - 4 r \theta + \lambda (12 - 10 r \theta + \lambda (-15 + r \theta + \lambda (-7 + 4 \lambda + 4 r \theta ))))) (16 (-1 + \lambda )^2 \lambda ^7 (1 - \lambda + r \theta ) \\ \quad + 8 \gamma \lambda ^5 (-(-1 + \lambda )^2 \lambda (-14 + \lambda (-1 + 10 \lambda )) + 2 (2 +\\ \lambda ^2 - 8 \lambda ^3 + 5 \lambda ^4) r \theta ) + 8 \gamma ^2 \lambda ^4 (-(-1 + \lambda ) \lambda (38 + \lambda (14 + \lambda (-69 + \lambda + 20 \lambda ^2))) \\ \quad + (20 + \lambda (-2 + \lambda (-3 + \lambda (-3 + 2 \lambda ) (3 + 10 \lambda )))) r \theta ) + 2 \gamma ^3 \lambda ^3 (\lambda (200 - \\ \lambda (-176 + \lambda (612 + \lambda (195 + \lambda (-571 + 8 \lambda (7 + 10 \lambda )))))) + 4 (40 + \lambda (34 + \lambda (-39 \\ \quad + 2 \lambda (-3 + \lambda (-9 + 2 \lambda (-4 + 5 \lambda )))))) r \theta ) + \gamma ^4 \lambda ^2 (320 r \theta + \lambda (240 + \\ 688 r \theta - \lambda (8 (-86 + 13 r \theta ) + \lambda (372 + 500 r \theta + \lambda (2 (744 + 7 r \theta ) + \lambda (-393 + 77 r \theta \\ \quad + \lambda (-949 + 32 r \theta + 16 \lambda (18 + 5 \lambda - 5 r \theta )))))))) + \gamma ^6 (32 r \theta + \lambda (-48 +\\ 208 r \theta + \lambda (64 (-2 + 5 r \theta ) + \lambda (12 + 44 r \theta - \lambda (2 (-98 + 73 r \theta ) + \lambda (18 + 60 r \theta + \lambda (\lambda (-71 \\ \quad + \lambda (-47 + 40 \lambda ) - 17 r \theta ) + 18 (7 + r \theta )))))))) + \gamma ^7 (16 (-1 + \\ r \theta ) + \lambda (-80 + 48 r \theta + \lambda (4 (-31 + 9 r \theta ) + \lambda (4 (-3 + r \theta ) + \lambda (2 (64 + 5 r \theta ) + \lambda (76 - 4 r \theta \\ \quad + \lambda (-31 - 14 r \theta + 3 \lambda (-9 + \lambda + r \theta )))))))) + \gamma ^5 \lambda (160 r \theta + \\ \lambda (16 + 608 r \theta + \lambda (264 + 408 r \theta + \lambda (356 - 372 r \theta + \lambda (-514 \\ \quad - 292 r \theta + \lambda (-663 + 6 r \theta + \lambda (449 + 9 r \theta + \lambda (347 - 8 \lambda (23 + 2 \lambda - 2 r \theta )))))))))) \end{array} \right\} }{4 A_2^2 ((-1 + \lambda ) \lambda + \gamma (-1 + (-1 + \lambda ) \lambda ))^2 (4 (-1 + \lambda ) \lambda ^2 + \gamma ^2 (-2 + \lambda ) (2 + 3 \lambda ) + 4 \gamma \lambda (-2 + \lambda ^2))^3}\\ \end{aligned}$$

Based on the above results, we can easily obtain the findings in Proposition 6 by using Mathematica. Note that due to the long expression of the threshold, we have omitted it here. If necessary, we will provide the source file. \(\Box\)

Proposition 7:

In equilibrium, we have

$$\begin{aligned}{} & {} \frac{\partial p_{1}^{bs*}}{\partial r}=\frac{2 \gamma ((-1 + \lambda ) \lambda + \gamma (-1 + (-1 + \lambda ) \lambda )) \theta }{A_{1}}\\{} & {} \frac{\partial p_{2}^{bs*}}{\partial r}=\frac{\lambda (-1 + \gamma (-1 +\frac{\partial p_{1}^{bs*}}{\partial r}))\theta }{2 A_2}\\{} & {} \frac{\partial p_{s}^{bs*}}{\partial r}=\frac{ {\gamma (8 \gamma ^3 + 4 \gamma ^2 (6 + 5 \gamma ) \lambda + 4 \gamma (1 + \gamma ) (6 + \gamma ) \lambda ^2 - 4 (1 + \gamma ) (-2 + \gamma (3 + 4 \gamma )) \lambda ^3 - (1 + \gamma ) (12 + \gamma (16 + 3 \gamma )) \lambda ^4 + 4 (1 + \gamma )^3 \lambda ^5) \theta }}{2 A_2 ((-1 + \lambda ) \lambda + \gamma (-1 + (-1 + \lambda ) \lambda )) (4 (-1 + \lambda ) \lambda ^2 + \gamma ^2 (-2 + \lambda ) (2 + 3 \lambda ) + 4 \gamma \lambda (-2 + \lambda ^2))}\\{} & {} \frac{\partial d_{1n}^{bs*}}{\partial r}=\frac{{\gamma (4 \gamma ^3 + 4 \gamma ^2 (3 + 2 \gamma ) \lambda + 12 \gamma (1 + \gamma ) \lambda ^2 - 4 (1 + \gamma ) (-1 + \gamma + \gamma ^2) \lambda ^3 + (1 + \gamma ) (-4 + (-4 + \gamma ) \gamma ) \lambda ^4) \theta }}{2 A_2 ((-1 + \lambda ) \lambda + \gamma (-1 + (-1 + \lambda ) \lambda )) (4 (-1 + \lambda ) \lambda ^2 + \gamma ^2 (-2 + \lambda ) (2 + 3 \lambda ) + 4 \gamma \lambda (-2 + \lambda ^2))}\\{} & {} \frac{\partial d_{2n}^{bs*}}{\partial r}=\frac{\lambda (-2 \gamma ^2 (2 + \gamma ) - 2 \gamma (1 + \gamma ) (4 + \gamma ) \lambda + (-2 + \gamma ) (1 + \gamma ) (2 + \gamma ) \lambda ^2 + 4 (1 + \gamma )^2 \lambda ^3) \theta }{2 ((-1 + \lambda ) \lambda + \gamma (-1 + (-1 + \lambda ) \lambda )) (4 (-1 + \lambda ) \lambda ^2 + \gamma ^2 (-2 + \lambda ) (2 + 3 \lambda ) + 4 \gamma \lambda (-2 + \lambda ^2))}\\{} & {} \frac{\partial d_{s}^{bs*}}{\partial r}=\frac{{(-2 \gamma ^2 (2 + \gamma ) - 2 \gamma (1 + \gamma ) (4 + \gamma ) \lambda + (-2 + \gamma ) (1 + \gamma ) (2 + \gamma ) \lambda ^2 + 4 (1 + \gamma )^2 \lambda ^3) ((-2 + \lambda ) \lambda + \gamma (-2 + (-2 + \lambda ) \lambda )) \theta }}{2 A_2 ((-1 + \lambda ) \lambda + \gamma (-1 + (-1 + \lambda ) \lambda )) (4 (-1 + \lambda ) \lambda ^2 + \gamma ^2 (-2 + \lambda ) (2 + 3 \lambda ) + 4 \gamma \lambda (-2 + \lambda ^2))}\\{} & {} \frac{\partial \pi _{1}^{bs*}}{\partial r}= \frac{\left\{ \begin{array}{l} \gamma t (4 (-2 + \lambda ) (-1 + \lambda ) \lambda ^4 + 2 \gamma ^3 \lambda (2 (8 + 18 \lambda - 13 \lambda ^3 + \lambda ^4 + \lambda ^5) + (12 + \lambda (12 - \lambda (8 + 3 \lambda ))) r \theta ) + 4 \gamma \lambda ^3 (8 \\ \quad + 2 r \theta + \lambda (-2 - 8 \lambda + 3 \lambda ^2 - 2 r \theta )) +\\ \gamma ^4 (8 + 8 r \ + \lambda (28 + \lambda (20 + \lambda (-17 + \lambda (-12 + 7 \lambda ))) + 2 (8 + (-4 + \lambda ) \lambda ^2) r \theta )) \\ \quad + \gamma ^2 \lambda ^2 (24 (2 + r \theta ) + \lambda (48 + \lambda (\lambda (-23 + 12 \lambda ) - 8 (7 + 2 r \theta ))))) \end{array} \right\} }{A_2 (4 (-1 + \lambda ) \lambda ^2 + \gamma ^2 (-2 + \lambda ) (2 + 3 \lambda ) + 4 \gamma \lambda (-2 + \lambda ^2))^2}\\{} & {} \frac{\partial \pi _{2}^{bs*}}{\partial r}=-\frac{\left\{ \begin{array}{l} \lambda (-2 \gamma ^2 (2 + \gamma ) - 2 \gamma (1 + \gamma ) (4 + \gamma ) \lambda + (-2 + \gamma ) (1 + \gamma ) (2 + \gamma ) \lambda ^2 + 4 (1 + \gamma )^2 \lambda ^3) t (4 (-1 + \lambda ) \lambda ^3 (-1 \\ \quad + \lambda + r \theta ) + 2 \gamma \lambda ^2 (6 - 4 r \theta + \lambda (-3 - 2 r \theta + \\ \lambda (-7 + 4 \lambda + 4 r \theta ))) + \gamma ^3 (4 - \lambda (2 (-5 + r \theta ) + \lambda (-3 + 2 r \theta + \lambda (5 \\ \quad + \lambda - r \theta )))) + \gamma ^2 \lambda (12 - 4 r \theta + \lambda (12 - 10 r \theta + \lambda (-15 + r \theta + \lambda (-7 + 4 \lambda + 4 r \theta ))))) \end{array} \right\} }{2 A_2 ((-1 + \lambda ) \lambda + \gamma (-1 + (-1 + \lambda ) \lambda )) (4 (-1 + \lambda ) \lambda ^2 + \gamma ^2 (-2 + \lambda ) (2 + 3 \lambda ) + 4 \gamma \lambda (-2 + \lambda ^2))^2} \end{aligned}$$

Based on the above results, we can easily obtain the findings in Proposition 7 using Mathematica. Note that due to the long expression of the threshold, we have omitted it here. If necessary, we will provide the source file. \(\Box\)

Proof of propositions 8 and 9:

We first compare the selling price and demand according to the equilibrium outcomes with socially conscious consumers. That is \(p_{1}^{bs*}>p_{2}^{bs*}\) by solving \(p_{2}^{bs*}>p_{s}^{bs*}\), which reduces \(0<r<\min \{r_{13},1\}\); by solving \(d_{1n}^{bs*}>d_{2n}^{bs*}\), which reduces \(\theta _{7}<\theta <1\) and \(r_{14}<r<1\); by solving \(d_{2n}^{bs*}>d_{s}^{bs*}\), which reduces \(0<r<\min \{r_{15},1\}\).

Next, we compare the profits and consumer surplus between the benchmark scenario and the introduction of the secondary market with socially conscious consumers. That is by solving \(\pi ^{bs*}>\pi ^{b*}\), which reduces \(\max \{0,\gamma _{12}\}<\gamma <1\), \(\theta _{8}<\theta <1\), and \(r_{16}<r<1\); \(cs^{bs*}>cs^{b*}\). Note that due to the long expression of the threshold, we have omitted it here. If necessary, we will provide the source file. \(\Box\)

Proof of proposition 10:

We compare the selling price, demand, and profit according to the equilibrium outcomes without and with socially conscious consumers, and thus obtain the findings. That is \(p_{1}^{bs*}>p_{1}^{bn*}\); \(p_{2}^{bs*}<p_{2}^{bn*}\); \(d_{1n}^{bs*}>d_{1n}^{bn*}\); \(d_{2n}^{bs*}<d_{2n}^{bn*}\); \(p_{s}^{bs*}>p_{s}^{bn*}\); \(d_{s}^{bs*}>d_{s}^{bn*}\); by solving \(\pi ^{bs*}>\pi ^{bn*}\), which reduces \(\max \{0,\gamma _{13}\}<\gamma <1\), \(\max \{0,\theta _{9}\}<\theta <1\), and \(\max \{0,r_{17}\}<r<1\). Note that due to the long expression of the threshold, we have omitted it here. If necessary, we will provide the source file. \(\Box\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Hou, R. & Ding, Z. The value of secondary markets when consumers are socially conscious. Oper Res Int J 24, 7 (2024). https://doi.org/10.1007/s12351-023-00810-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12351-023-00810-9

Keywords

Navigation