Skip to main content

Advertisement

Log in

A novel inverse data envelopment analysis model with negative ratio data

  • Original Paper
  • Published:
Operational Research Aims and scope Submit manuscript

Abstract

Data envelopment analysis (DEA) is a mathematical programming method for evaluating the efficiency of a homogeneous set of decision-making units (DMUs) using multiple inputs and outputs. Inverse DEA estimates a DMU’s input (or output) when some or all DMU outputs (or inputs) are changed. Ratio DEA (DEA-R) combines DEA with ratio analysis to handle ratio data. Real-world DEA-R models often involve negative values for the inputs or outputs. This study presents a novel model for solving inverse DEA problems with negative ratio data for the first time. We present a real-life case study to demonstrate the applicability and efficacy of the DEA models proposed in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Not applicable.

References

  • Banker RD, Charnes A, Cooper WW (1984) Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manage Sci 30(9):1078–1092

    Article  Google Scholar 

  • Despić O (2013) Some properties of geometric DEA models. Croatian Operational Res Review 4:2–18

    Google Scholar 

  • Despić O, Despić M, Paradi JC (2007) DEA-R: Ratio-based comparative efficiency model, its mathematical relation to DEA and its use in applications. J Prod Anal 28(1–2):33–44

    Article  Google Scholar 

  • Emrouznejad A, Yang GL (2018) A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. Socioecon Plann Sci 61:4–8

    Article  Google Scholar 

  • Emrouznejad A, Anouze AL, Thanassoulis E (2010) A semi-oriented radial measure for measuring the efficiency of decision making units with negative data, using DEA. Eur J Oper Res 200(1):297–304

    Article  Google Scholar 

  • Emrouznejad A, Amin GR, Ghiyasi M, Michali M (2023) A review of inverse data envelopment analysis: origins, development, and future directions. IMA J Manag Math 34(3):421–440

    Google Scholar 

  • Ghazi A, Hosseinzadeh Lotfi F (2023) Marginal rates in DEA using defining hyperplanes of PPS with CRS technology. Oper Res Int Journal 23:11. https://doi.org/10.1007/s12351-023-00743-3

    Article  Google Scholar 

  • Ghiyasi M (2015) On inverse DEA model: The case of variable returns to scale. Comput Ind Eng 87:407–409

    Article  Google Scholar 

  • Ghiyasi M (2017) Inverse DEA based on cost and revenue efficiency. Comput Ind Eng 114:258–263

    Article  Google Scholar 

  • Ghiyasi M (2019) Novel criterion models in the inverse DEA problem. Int J Operational Res 35(1):20–36

    Article  Google Scholar 

  • Ghiyasi M (2024) An inverse data envelopment analysis model for solving time substitution problems. Decision Analytics J 11:100467

    Article  Google Scholar 

  • Ghiyasi M, Zhu N (2020) An inverse semi-oriented radial data envelopment analysis measure for dealing with negative data. IMA J Manag Math 31(4):505–516

    Google Scholar 

  • Ghiyasi M, Soltanifar M, Sharafi H (2022) A novel inverse DEA-R model with application in hospital efficiency. Socioecon Plann Sci 84:101427

    Article  Google Scholar 

  • Ghobadi S, Jahangiri S (2015) Inverse DEA: review, extension and application. Int J Inf Technol Decis Mak 14(04):805–824

    Article  Google Scholar 

  • Ghobadi S, Soleimani-Chamkhorami K, Zanboori E (2023) A novel inverse DEA model for restructuring DMUs with negative data. Int J Operational Res 46(1):118–132

    Article  Google Scholar 

  • Hadi-Vencheh A, Foroughi AA (2006) A generalized DEA model for inputs/outputs estimation. Math Comput Model 43(5–6):447–457

    Article  Google Scholar 

  • Hadi-Vencheh A, Foroughi AA, Soleimani-damaneh M (2008) A DEA model for resource allocation. Econ Model 25(5):983–993

    Article  Google Scholar 

  • Hosseinzadeh Lotfi F, Allahviranloo T, Pedrycz W, Mozaffari MR, Gerami J (2023) Comparative Efficiency in Data Envelopment Analysis Based on Ratio Analysis. Springer Cham. https://doi.org/10.1007/978-3-031-43181-4

    Article  Google Scholar 

  • Hu X, Li J, Li X, Cui J (2020) A revised inverse data envelopment analysis model based on radial models. Mathematics 8(5):803

    Article  Google Scholar 

  • Jahani S, Noveiri M, Kordrostami S, Ghiyasi M (2024) Inverse data envelopment analysis optimization approaches with flexible measures. J Model Manag 19(1):194–214

    Article  Google Scholar 

  • Jahanshahloo GR, Lotfi FH, Shoja N, Tohidi G, Razavyan S (2004) Input estimation and identification of extra inputs in inverse DEA models. Appl Math Comput 156(2):427–437

    Google Scholar 

  • Jahanshahloo GR, Hosseinzadeh Lotfi F, Rostamy-Malkhalifeh M, Ghobadi S (2014) Using enhanced Russell model to solve inverse data envelopment analysis problems. Sci World J 2014:571896

    Article  Google Scholar 

  • Kaffash S, Kazemi Matin R, Tajik M (2018) A directional semi-oriented radial DEA measure: an application on financial stability and the efficiency of banks. Ann Oper Res 264:213–234

    Article  Google Scholar 

  • Kerstens K, Van de Woestyne I (2011) Negative data in DEA: a simple proportional distance function approach. J the Operational Res Society 62(7):1413–1419

    Article  Google Scholar 

  • Lertworasirikul S, Charnsethikul P, Fang SC (2011) Inverse data envelopment analysis model to preserve relative efficiency values: The case of variable returns to scale. Comput Ind Eng 61(4):1017–1023

    Article  Google Scholar 

  • Lin, S.-W., & Lu, W.-M. (2024). Using inverse DEA and machine learning algorithms to evaluate and predict suppliers’ performance in the apple supply chain. International Journal of Production Economics, 109203.

  • Lu J, Li M, Shen Z (2022) A new inverse DEA model with frontier changes for analyzing the achievement path of CO2 emissions target of China in 2030. J Clean Prod 375:134014

    Article  Google Scholar 

  • Matin RK, Amin GR, Emrouznejad A (2014) A modified semi-oriented radial measure for target setting with negative data. Measurement 54:152–158

    Article  Google Scholar 

  • Mozaffari MR, Gerami J, Jablonsky J (2014a) Relationship between DEA models without explicit inputs and DEA-R models. CEJOR 22:1–12

    Article  Google Scholar 

  • Mozaffari MR, Kamyab P, Jablonsky J, Gerami J (2014b) Cost and revenue efficiency in DEA-R models. Comput Ind Eng 78:188–194

    Article  Google Scholar 

  • Mozaffari MR, Dadkhah F, Jablonsky J, Wanke PF (2020) Finding efficient surfaces in DEA-R models. Appl Math Comput 386:125497

    Google Scholar 

  • Paradi JC, Zhu H (2013) A survey on bank branch efficiency and performance research with data envelopment analysis. Omega 41(1):61–79

    Article  Google Scholar 

  • Portela MC, Thanassoulis E (2010) Malmquist-type indices in the presence of negative data: An application to bank branches. J Bank Finance 34(7):1472–1483

    Article  Google Scholar 

  • Portela MS, Thanassoulis E, Simpson G (2004) Negative data in DEA: A directional distance approach applied to bank branches. J Operational Res Society 55(10):1111–1121

    Article  Google Scholar 

  • Sayar, T., Fathali, J., & Ghiyasi, M. (2023). The inverse 1-median problem on a tree with transferring the weight of vertices. Transactions on Combinatorics.

  • Sharp JA, Meng W, Liu W (2007) A modified slacks-based measure model for data envelopment analysis with ‘natural’negative outputs and inputs. J Operational Res Society 58(12):1672–1677

    Article  Google Scholar 

  • Soltanifar M, Sharafi H (2022) A modified DEA cross efficiency method with negative data and its application in supplier selection. J Comb Optim 43(1):265–296

    Article  Google Scholar 

  • Soltanifar M, Ghiyasi M, Sharafi H (2022) Inverse DEA-R models for merger analysis with negative data. IMA J Manag Math 34(3):491–510

    Google Scholar 

  • Tavana M, Izadikhah M, Toloo M, Roostaee R (2021) A new non-radial directional distance model for data envelopment analysis problems with negative and flexible measures. Omega 102:102355

    Article  Google Scholar 

  • Wegener M, Amin GR (2019) Minimizing greenhouse gas emissions using inverse DEA with an application in oil and gas. Expert Syst Appl 122:369–375

    Article  Google Scholar 

  • Wei QL, Zhang J, Zhang X (2000a) An inverse DEA model for input/output estimate. Eur J Oper Res 121(1):151–163

    Article  Google Scholar 

  • Wei Q, Zhang J, Zhang X (2000b) An inverse DEA model for inputs/outputs estimate. Eur J Oper Res 121(1):151–163

    Article  Google Scholar 

  • Wei CK, Chen LC, Li RK, Tsai CH (2011) Using the DEA-R model in the hospital industry to study the pseudo-inefficiency problem. Expert Syst Appl 38(3):2172–2176

    Article  Google Scholar 

  • Younesi, A., Lotfi, F. H., & Arana-Jiménez, M. (2023). Using slacks-based model to solve inverse DEA with integer intervals for input estimation. Fuzzy Optimization Decision Making, 1–23.

  • Zhang XS, Cui JC (1999) A project evaluation system in the state economic information system of china an operations research practice in public sectors. Int Trans Oper Res 6(5):441–452

    Article  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madjid Tavana.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Ethics approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Table 7

Table 7 Input–output data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltanifar, M., Tavana, M., Charles, V. et al. A novel inverse data envelopment analysis model with negative ratio data. Oper Res Int J 25, 25 (2025). https://doi.org/10.1007/s12351-024-00891-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12351-024-00891-0

Keyword