Skip to main content

Advertisement

Log in

Distribution channel strategies of suboptimal food supply chain under demand uncertainty

  • Original Paper
  • Published:
Operational Research Aims and scope Submit manuscript

Abstract

The commercialization of edible suboptimal foods thrown away seems a promising lever for tackling food shortage and waste. This paper constructs a Stackelberg game model to analyze the optimal distribution channel decisions of the suboptimal food supply chain consisting of a manufacturer and a retailer under the wholesale and consignment mode, respectively. Moreover, this paper performs the sensitivity analysis of key parameters including suboptimal food demand potential, marketing service cost coefficient and retail price. The results show that the optimal distribution channel strategies of the manufacturer and retailer are obtained for those who are profit-driven under different conditions. The suboptimal food demand potential, the preference of consumers to the suboptimal food, marketing service cost coefficient, retail price and price discount are key factors. Interestingly, the Pareto improvement for the whole suboptimal food supply chain can be reached under consignment mode, which means that the manufacturer and retailer not only achieve higher expected profits but also reduce food waste. This study provides important support for increasing firms’ profits in the suboptimal food supply chain and promoting sustainable development from a game theoretic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

Download references

Acknowledgements

This research is funded by the Zhejiang Province’s 14th Five-Year Postgraduate’s Ideological and Political Course: Logistics and Supply Chain Management; Hangzhou Dianzi University (Grant No. YJSKCSZ202312).

Funding

Zhejiang Province’s 14th Five-Year Postgraduate’s Ideological and Political Course: Logistics and Supply Chain Management, Hangzhou Dianzi University, YJSKCSZ202312, Jie Wei.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongjin Ying.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix: Proof of Lemma 1

The first partial derivative of \(E\left[ {\pi_{R} \left( {Q_{w} ,s_{w} } \right)} \right]\) with respect to \(Q_{w}\), \(s_{w}\):

$$\frac{{\partial E\left[ {\pi_{R} \left( {Q_{w} ,s_{w} } \right)} \right]}}{{\partial Q_{w} }} = - w\beta + \varphi p\left[ {\beta - \frac{{\beta \left( {\beta Q - \gamma s - \theta a + b\varphi p} \right)}}{n}} \right]$$
(A.1)
$$\frac{{\partial E\left[ {\pi_{R} \left( {Q_{w} ,s_{w} } \right)} \right]}}{{\partial s_{w} }} = - ks + \frac{{\gamma \varphi p\left( {\beta Q - \gamma s - \theta a + b\varphi p} \right)}}{n}$$
(A.2)

The second derivative of \(E\left[ {\pi \left( {Q_{w} ,s_{w} } \right)} \right]\) with \(Q_{w}\), \(s_{w}\): \(\frac{{\partial^{2} E\left[ {\pi_{R} \left( {Q_{w} ,s_{w} } \right)} \right]}}{{\partial Q_{w}^{2} }} = - \frac{{\beta^{2} \varphi p}}{n} < 0\), \(\frac{{\partial^{2} E\left[ {\pi_{R} \left( {Q_{w} ,s_{w} } \right)} \right]}}{{\partial s_{w}^{2} }} = - k - \frac{{\gamma^{2} \varphi p}}{n} < 0\). And \(\frac{{\partial^{2} E\left[ {\pi_{R} \left( {Q_{w} ,s_{w} } \right)} \right]}}{{\partial Q_{w} \partial s_{w} }} = \frac{p\beta \gamma \varphi }{n}\).

The Hessian matrix of \(E\left[ {\pi_{R} \left( {Q_{w} ,s_{w} } \right)} \right]\) is verified the joint concavity on \(Q_{w}\), \(s_{w}\):

$$\frac{{\partial^{2} E\left[ {\pi_{R} \left( {Q_{w} ,s_{w} } \right)} \right]}}{{\partial Q_{w}^{2} }} \times \frac{{\partial^{2} E\left[ {\pi_{R} \left( {Q_{w} ,s_{w} } \right)} \right]}}{{\partial s_{w}^{2} }} - \left( {\frac{{\partial^{2} E\left[ {\pi_{R} \left( {Q_{w} ,s_{w} } \right)} \right]}}{{\partial Q_{w} \partial s_{w} }}} \right)^{2} = \frac{{k\beta^{2} \varphi {\text{p}}}}{n} > 0$$
(A.3)

The expected profit of the retailer is joint concavity on \(Q_{w}\), \(s_{w}\): \(Q_{w}^{*} = \frac{{\left( {\varphi p - w} \right)\left( {kn + \gamma^{2} \varphi p} \right)}}{k\beta \varphi p} + \frac{\theta a - b\varphi p}{\beta }\), \(s_{w}^{*} = \frac{{\gamma \left( {\varphi p - w} \right)}}{k}\). Moreover, only the potential market demand hold: \(\theta a > b\varphi p - \frac{{\left( {\varphi p - w} \right)\left( {kn + \gamma^{2} \varphi p} \right)}}{k\varphi p}\), the retailer is willing to sell SFs under the wholesale mode.

Proof of Proposition 1

According to Lemma 1, we substitute \(Q_{w}^{*}\), \(s_{w}^{*}\) into \(E\left[ {\pi_{M} \left( {Q_{w} ,s_{w} ,w} \right)} \right]\), then the first and second partial derivatives of \(E\left[ {\pi_{M} \left( w \right)} \right]\) with \(w\):

$$\frac{{\partial E\left[ {\pi_{M} \left( w \right)} \right]}}{\partial w} = \frac{{\left( {kn + \gamma^{2} \varphi p} \right)\left( {\varphi p + c - 2w} \right) + k\varphi p\left( {\theta a - bp\varphi } \right)}}{k\varphi p}$$
(A.4)
$$\frac{{\partial^{2} E\left[ {\pi_{M} \left( w \right)} \right]}}{{\partial w^{2} }} = - \frac{{2\left( {kn + \gamma^{2} \varphi p} \right)}}{k\varphi p} < 0$$
(A.5)

The manufacturer’s expected profit is concave in \(w\). By solving \({{\partial E\left[ {\pi_{M} \left( w \right)} \right]} \mathord{\left/ {\vphantom {{\partial E\left[ {\pi_{M} \left( w \right)} \right]} {\partial w}}} \right. \kern-0pt} {\partial w}} = 0\), the optimal wholesale price is obtained: \(w^{**} = \frac{1}{2}\left( {c + \frac{{p\varphi \left[ {\gamma^{2} \varphi p + kn + k\left( {\theta a - bp\varphi } \right)} \right]}}{{kn + \gamma^{2} \varphi p}}} \right)\).

Substituting \(w^{**}\) into \(Q_{w}^{*}\), \(s_{w}^{*}\), the retailer’s optimal order quantity and marketing service level are obtained: \(Q_{w}^{**} = \frac{{\left( {\varphi p - c} \right)\left( {kn + \gamma^{2} \varphi p} \right) + k\varphi p\left( {\theta a - b\varphi p} \right)}}{{{\text{2k}}\beta \varphi p}}\), \(s_{w}^{**} = \frac{{\gamma \left[ {\left( {\varphi p - c} \right)\left( {kn + \gamma^{2} \varphi p} \right) - k\varphi p\left( {\theta a - b\varphi p} \right)} \right]}}{{2k\left( {kn + \gamma^{2} \varphi p} \right)}}\).

To ensure that SFSC is willing to provide and sell SFs, it must hold: \(Q_{w}^{**} > 0\), \(s_{w}^{**} > 0\), \(w^{**} > 0\). Therefore, the potential market demand must hold: \(b\varphi p - \frac{{\left( {\varphi p - c} \right)\left( {kn + \gamma^{2} \varphi p} \right)}}{k\varphi p} < \theta a < b\varphi p + \frac{{\left( {\varphi p - c} \right)\left( {kn + \gamma^{2} \varphi p} \right)}}{k\varphi p}\).

Proof of Corollary 1

(i) Solving the first partial derivative of \(Q_{w}^{**}\) with \({\text{a}}\), \(\lambda\), \({\text{k}}\), \({\text{p}}\), respectively:

$$\frac{{\partial Q_{w}^{**} }}{\partial a} = \frac{{\left( {1 - \varphi } \right)p}}{{2\beta \left( {1 - \lambda } \right)V}} > 0$$
(A.6)
$$\frac{{\partial Q_{w}^{**} }}{\partial \lambda } = \frac{{\left( {1 - \varphi } \right)pa}}{{2\beta \left( {1 - \lambda } \right)^{2} V}} > 0$$
(A.7)
$$\frac{{\partial Q_{w}^{**} }}{\partial k} = - \frac{{\gamma^{2} \left( {\varphi p - c} \right)}}{{2k^{2} \beta }} < 0$$
(A.8)
$$\frac{{\partial Q_{w}^{**} }}{\partial p} = \frac{{\frac{{a\left( {1 - \varphi } \right)p}}{{\left( {1 - \lambda } \right)V}} + \frac{cn}{{\varphi p}} - b\varphi p + \frac{{\gamma^{2} \varphi p}}{k}}}{2\beta p} > 0$$
(A.9)

(ii) Solving the first partial derivative of \(s_{w}^{**}\) with \({\text{a}}\), \(\lambda\), \({\text{k}}\), \(\varphi\), respectively:

$$\frac{{\partial s_{w}^{**} }}{\partial a} = - \frac{{\gamma \varphi p\left( {1 - \varphi } \right)p}}{{2V\left( {1 - \lambda } \right)\left( {kn + \gamma^{2} \varphi p} \right)}} < 0$$
(A.10)
$$\frac{{\partial s_{w}^{**} }}{\partial \lambda } = - \frac{{\gamma \varphi p\left( {1 - \varphi } \right)pa}}{{2V\left( {1 - \lambda } \right)^{2} \left( {kn + \gamma^{2} \varphi p} \right)}} < 0$$
(A.11)
$$\frac{{\partial s_{w}^{**} }}{\partial k} = \frac{\gamma }{{2k^{2} }}\left( {\frac{{ - \left( {\varphi p - c} \right)\left( {kn + \gamma^{2} \varphi p} \right)^{2} + \varphi pk^{2} n\left( {\theta a - b\varphi p} \right)}}{{\left( {kn + \gamma^{2} \varphi p} \right)^{2} }}} \right)$$
(A.12)

Given \(\theta a < b\varphi p + \frac{{\left( {\varphi p - c} \right)\left( {kn + \gamma^{2} \varphi p} \right)}}{k\varphi p}\), Then \(\frac{{\partial s_{w}^{**} }}{\partial k} < - \frac{{\gamma^{3} \varphi p\left( {\varphi p - c} \right)}}{{2k^{2} \left( {kn + \gamma^{2} \varphi p} \right)}} < 0\).

$$\begin{aligned} \frac{{\partial s_{w}^{{**}} }}{{\partial \varphi }} & = \frac{{\gamma p}}{{2k\left( {kn + \gamma ^{2} \varphi p} \right)}}\left[ {\frac{{ka\varphi p\left( {kn + \gamma ^{2} \varphi p} \right)}}{{V\left( {1 - \lambda } \right)}} + \left( {kn + \gamma ^{2} \varphi p} \right)^{2} } \right. \\ & \quad + \left. {kb\varphi p\left( {kn + \gamma ^{2} \varphi p} \right) - k^{2} n\left( {\theta a - b\varphi p} \right)} \right] \\ \end{aligned}$$
(A.13)

Given \(\theta a < b\varphi p + \frac{{\left( {\varphi p - c} \right)\left( {kn + \gamma^{2} \varphi p} \right)}}{k\varphi p}\), Then \(\frac{{\partial s_{w}^{**} }}{\partial \varphi } > \frac{\gamma p}{{2k}}\left[ {\frac{ka\varphi p}{{V\left( {1 - \lambda } \right)}} + \gamma^{2} \varphi p + kb\varphi p + \frac{knc}{{\varphi p}}} \right] > 0\).

(iii) Solving the first partial derivative of \(w^{**}\) with \({\text{a}}\), \(\lambda\), \({\text{k}}\), \({\text{p}}\), respectively:

$$\frac{{\partial w^{**} }}{\partial a} = \frac{{k\varphi p\left( {1 - \varphi } \right)p}}{{2V\left( {1 - \lambda } \right)\left( {kn + \gamma^{2} \varphi p} \right)}} > 0$$
(A.14)
$$\frac{{\partial w^{**} }}{\partial \lambda } = \frac{{ak\varphi p\left( {1 - \varphi } \right)p}}{{2V\left( {1 - \lambda } \right)^{2} \left( {kn + \gamma^{2} \varphi p} \right)}} > 0$$
(A.15)
$$\frac{{\partial w^{**} }}{\partial k} = \frac{{\gamma^{2} \varphi^{2} p^{2} \left[ {\theta a - b\varphi p} \right]}}{{2\left( {kn + \gamma^{2} \varphi p} \right)^{2} }} > 0$$
(A.16)
$$\frac{{\partial w^{**} }}{\partial p} = \frac{{\varphi \left[ {k\left( {2kn + \gamma^{2} \varphi p} \right)\left( {\theta a - b\varphi p} \right) + \left( {kn + \gamma^{2} \varphi p} \right)^{2} } \right]}}{{2\left( {kn + \gamma^{2} \varphi p} \right)^{2} }} > 0$$
(A.17)

Proof of Lemma 2

Taking the first derivative of \(E\left[ {\pi_{R} \left( {Q_{c} ,s_{c} } \right)} \right]\) with respect to \(Q_{c}\), \(s_{c}\):

$$\frac{{\partial E\left[ {\pi_{R} \left( {Q_{c} ,s_{c} } \right)} \right]}}{{\partial Q_{c} }} = \left( {1 - \omega } \right)\varphi p\left( {\beta - \frac{{\beta \left( {\beta Q - \gamma s - \theta a + b\varphi p} \right)}}{n}} \right)$$
(A.18)
$$\frac{{\partial E\left[ {\pi_{R} \left( {Q_{c} ,s_{c} } \right)} \right]}}{{\partial s_{c} }} = - ks + \frac{{\left( {1 - \omega } \right)\gamma \varphi p\left( {\beta Q - \gamma s - \theta a + b\varphi p} \right)}}{n}$$
(A.19)

Then solving the second partial derivative of \(E\left[ {\pi \left( {Q_{c} ,s_{c} } \right)} \right]\) with \(Q_{c}\), \(s_{c}\): \(\frac{{\partial^{2} E\left[ {\pi_{R} \left( {Q_{c} ,s_{c} } \right)} \right]}}{{\partial Q_{c}^{2} }} = \frac{{\beta^{2} \varphi p\left( {\omega - 1} \right)}}{n} < 0\), \(\frac{{\partial^{2} E\left[ {\pi_{R} \left( {Q_{c} ,s_{c} } \right)} \right]}}{{\partial s_{c}^{2} }} = - k - \frac{{\gamma^{2} \varphi p\left( {1 - \omega } \right)}}{n} < 0\). And \(\frac{{\partial^{2} E\left[ {\pi_{R} \left( {Q_{c} ,s_{c} } \right)} \right]}}{{\partial Q_{c} \partial s_{c} }} = \frac{{p\beta \gamma \varphi \left( {1 - \omega } \right)}}{n}\).

The Hessian matrix of \(E\left[ {\pi_{R} \left( {Q_{c} ,s_{c} } \right)} \right]\) is verified the joint concavity on \(Q_{c}\), \(s_{c}\):

$$\frac{{\partial^{2} E\left[ {\pi_{R} \left( {Q_{c} ,s_{c} } \right)} \right]}}{{\partial Q_{c}^{2} }} \times \frac{{\partial^{2} E\left[ {\pi_{R} \left( {Q_{c} ,s_{c} } \right)} \right]}}{{\partial s_{c}^{2} }} - \left( {\frac{{\partial^{2} E\left[ {\pi_{R} \left( {Q_{c} ,s_{c} } \right)} \right]}}{{\partial Q_{c} \partial s_{c} }}} \right)^{2} = \frac{{k\beta^{2} \varphi {\text{p}}\left( {1 - \omega } \right)}}{n} > 0$$
(A.20)

The expected profit of the retailer is concave on \(Q_{c}\), \(s_{c}\). Then we get \(Q_{c}^{*} = \frac{{kn + \left( {1 - \omega } \right)\gamma^{2} \varphi p}}{k\beta } + \frac{\theta a - b\varphi p}{\beta }\), \(s_{c}^{*} = \frac{{\left( {1 - \omega } \right)\gamma \varphi p}}{k}\). Moreover, only the potential market demand hold: \(\theta a > b\varphi p - \frac{{kn + \left( {1 - \omega } \right)\gamma^{2} \varphi p}}{k}\), the retailer is willing to sell SFs under the consignment mode.

Proof of Proposition 2

According to Lemma 2, we substitute \(Q_{c}^{*}\), \(s_{c}^{*}\) into \(E\left[ {\pi_{M} \left( {Q_{c} ,s_{c} ,\omega } \right)} \right]\), then the first and second partial derivatives of \(E\left[ {\pi_{M} \left( \omega \right)} \right]\) with \(\omega\):

$$\frac{{\partial E\left[ {\pi_{M} \left( \omega \right)} \right]}}{\partial \omega } = \frac{{2c\gamma^{2} \varphi p + \varphi {\text{p}}\left[ {kn + 2k\left( {\theta a - b\varphi p} \right) + 2p\gamma^{2} \varphi \left( {1 - \omega } \right)} \right] - 2\omega \gamma^{2} \varphi^{2} p^{2} }}{2k}$$
(A.21)
$$\frac{{\partial^{2} E\left[ {\pi_{M} \left( \omega \right)} \right]}}{{\partial \omega^{2} }} = - \frac{{2\gamma^{2} \varphi^{2} p^{2} }}{k} < 0$$
(A.22)

So the manufacturer’s expected profit is concave in \(\omega\). By solving \(\frac{{\partial E\left[ {\pi_{M} \left( \omega \right)} \right]}}{\partial \omega } = 0\), the manufacturer’s optimal consignment revenue-sharing ratio is \(\omega^{**} = \frac{{2\gamma^{2} \left( {\varphi p + c} \right) + kn + 2k\left( {\theta a - b\varphi p} \right)}}{{4\gamma^{2} \varphi p}}\).

Substituting \(\omega^{**}\) into \(Q_{c}^{*}\), \(s_{c}^{*}\), the retailer’s optimal order quantity \(Q_{c}^{**} = \frac{{2\gamma^{2} \left( {\varphi p - c} \right) + 3kn + 2k\left( {\theta a - b\varphi p} \right)}}{4k\beta }\) and service level \(s_{c}^{**} = \frac{{2\gamma^{2} \left( {\varphi p - c} \right) - kn - 2k\left( {\theta a - b\varphi p} \right)}}{4k\gamma }\) are obtained.

In order to ensure that SFSC can be willing to provide and sell SFs, it must hold: \(Q_{c}^{**} > 0\),\(s_{c}^{**} > 0\), \(\omega^{**} > 0\). Therefore, the potential market demand must hold: \({\text{max}}\left\{ {b\varphi p - \frac{{2\gamma^{2} \left( {\varphi p - c} \right) + 3kn}}{2k},b\varphi p - \frac{{2\gamma^{2} \left( {\varphi p + c} \right) + kn}}{2k}} \right\} < \theta a < b\varphi p + \frac{{2\gamma^{2} \left( {\varphi p - c} \right) - kn}}{2k}\).

Proof of Corollary 2

(i) Solving the first partial derivative of \(Q_{c}^{**}\) with \({\text{a}}\), \(\lambda\), \({\text{k}}\), \({\text{p}}\), respectively:

$$\frac{{\partial Q_{c}^{**} }}{\partial a} = \frac{{p\left( {1 - \varphi } \right)}}{{2V\beta \left( {1 - \lambda } \right)}} > 0$$
(A.23)
$$\frac{{\partial Q_{c}^{**} }}{\partial \lambda } = \frac{{\left( {1 - \varphi } \right)pa}}{{2\beta \left( {1 - \lambda } \right)^{2} V}} > 0$$
(A.24)
$$\frac{{\partial Q_{c}^{**} }}{\partial k} = - \frac{{\gamma^{2} \left( {\varphi p - c} \right)}}{{2k^{2} \beta }} < 0$$
(A.25)
$$\frac{{\partial Q_{c}^{**} }}{\partial p} = \frac{{\theta a - b\varphi p + \frac{{\gamma^{2} \varphi p}}{k}}}{2\beta p} > 0$$
(A.26)

(ii) Solving the first partial derivative of \(s_{w}^{**}\) with \({\text{a}}\), \(\lambda\), \({\text{k}}\), \(\varphi\), respectively:

$$\frac{{\partial s_{c}^{**} }}{\partial a} = - \frac{{\left( {1 - \varphi } \right)p}}{{2\gamma \left( {1 - \lambda } \right)V}} < 0$$
(A.27)
$$\frac{{\partial s_{c}^{**} }}{\partial \lambda } = - \frac{{\left( {1 - \varphi } \right)pa}}{{2\gamma \left( {1 - \lambda } \right)^{2} V}} < 0$$
(A.28)
$$\frac{{\partial s_{c}^{**} }}{\partial k} = - \frac{{\gamma \left( {\varphi p - c} \right)}}{{2k^{2} }} < 0$$
(A.29)
$$\frac{{\partial s_{c}^{**} }}{\partial \varphi } = \frac{1}{2\gamma }\left( {bp + \frac{{\gamma^{2} p}}{k} + \frac{ap}{{\left( {1 - \lambda } \right)V}}} \right) > 0$$
(A.30)

(iii) Solving the first partial derivative of \(\omega^{**}\) with \({\text{a}}\), \(\lambda\), \({\text{k}}\), \({\text{p}}\), respectively:

$$\frac{{\partial \omega^{**} }}{\partial a} = \frac{{k\left( {1 - \varphi } \right)}}{{2V\gamma^{2} \left( {1 - \lambda } \right)\varphi }} > 0$$
(A.31)
$$\frac{{\partial \omega^{**} }}{\partial \lambda } = \frac{{ak\left( {1 - \varphi } \right)}}{{2V\gamma^{2} \left( {1 - \lambda } \right)^{2} \varphi }} > 0$$
(A.32)
$$\frac{{\partial \omega^{**} }}{\partial k} = \frac{{2\left( {\theta a - b\varphi p} \right) + n}}{{4pV\gamma^{2} \varphi }} > 0$$
(A.33)
$$\frac{{\partial \omega^{**} }}{\partial p} = - \frac{{kn + 2\gamma^{2} c}}{{4p^{2} \gamma^{2} \varphi }} < 0$$
(A.34)

Proof of Proposition 3

To make sure that the retailer is willing to operate under two modes, i.e., \(Q_{w}^{*} > 0\), \(Q_{c}^{*} > 0\), We set: \(\theta a_{1} = b\varphi p - \frac{{\left( {kn + \gamma^{2} \varphi p} \right)\left( {\varphi p - w} \right)}}{k\varphi p}\), \(\theta a_{2} = b\varphi p - \frac{{kn + \gamma^{2} \varphi p\left( {1 - \omega } \right)}}{k}\). If \(a > a_{1}\), \(Q_{w}^{*} > 0\); If \(a > a_{2}\), \(Q_{c}^{*} > 0\). Comparing \(a_{1}\) and \(a_{2}\), only \(a > max\left\{ {a_{1} ,a_{2} } \right\}\), \(Q_{w}^{*} ,Q_{c}^{*} > 0\) and vice versa. \(\theta a_{1} - \theta a_{2} = \frac{nw}{{\varphi p}} + \frac{{\gamma^{2} \left( {w - \omega \varphi p} \right)}}{k}\). When \({\text{w}} \ge \frac{{\omega \left( {\gamma \varphi {\text{p}}} \right)^{2} }}{{kn + \gamma^{2} \varphi {\text{p}}}}\), \(a_{1} \ge a_{2}\); and when \({\text{w}} < \frac{{\omega \left( {\gamma \varphi {\text{p}}} \right)^{2} }}{{kn + \gamma^{2} \varphi {\text{p}}}}\), \(a_{1} < a_{2}\).

Therefore, when \({\text{w}} \ge \frac{{\omega \left( {\gamma \varphi {\text{p}}} \right)^{2} }}{{kn + \gamma^{2} \varphi {\text{p}}}}\): (i) \(Q_{w}^{*} > 0\), \(Q_{c}^{*} > 0\) if \(a > a_{1}\); (ii) \(Q_{w}^{*} \ge 0\), \(Q_{c}^{*} = 0\) if \(a_{2} \le a \le a_{1}\); (iii) \(Q_{w}^{*} = 0\), \(Q_{c}^{*} = 0\) if \(a \le a_{2}\); when \({\text{w}} < \frac{{\omega \left( {\gamma \varphi {\text{p}}} \right)^{2} }}{{kn + \gamma^{2} \varphi {\text{p}}}}\): (i) \(Q_{w}^{*} > 0\), \(Q_{c}^{*} > 0\) if \(a > a_{2}\); (ii) \(Q_{w}^{*} = 0\), \(Q_{c}^{*} \ge 0\) if \(a_{1} \le a \le a_{2}\); (iii) \(Q_{w}^{*} = 0\), \(Q_{c}^{*} = 0\) if \(a \le a_{1}\).

Proof of Proposition 4

The comparison of the optimal order quantity and marketing service level are as follows:

$$Q_{w}^{*} - Q_{c}^{*} = \frac{{ - knw + \gamma^{2} \varphi p\left( {\omega \varphi p - w} \right)}}{kp\beta \varphi }$$
(A.35)

Solving the first partial derivative of \(Q_{w}^{*} - Q_{c}^{*}\) with \({\text{w}}\):

$$\frac{{\partial \left( {Q_{w}^{*} - Q_{c}^{*} } \right)}}{\partial w} = \frac{{ - kn - \gamma^{2} \varphi p}}{k\beta \varphi p} < 0$$
(A.36)

Let \(w_{1} = {{\omega \left( {\gamma \varphi p} \right)^{2} } \mathord{\left/ {\vphantom {{\omega \left( {\gamma \varphi p} \right)^{2} } {\left( {kn + \gamma^{2} \varphi p} \right)}}} \right. \kern-0pt} {\left( {kn + \gamma^{2} \varphi p} \right)}}\), we can get: if \(w < w_{1}\), \(Q_{w}^{*} > Q_{c}^{*}\).

$$s_{w}^{*} - s_{c}^{*} = \frac{{\gamma \left( {\omega \varphi p - w} \right)}}{k}$$
(A.37)

Solving the first partial derivative of \(s_{w}^{*} - s_{c}^{*}\) with \({{w}}\):

$$\frac{{\partial \left( {s_{w}^{*} - s_{c}^{*} } \right)}}{\partial w} = - \frac{\gamma }{k} < 0$$
(A.38)

Let \(w_{2} = \omega \varphi p\), we can get: if \(w < w_{2}\), \(s_{w}^{*} > s_{c}^{*}\).

Obviously, \(w_{1} - w_{2} = \left( {\frac{{\gamma^{2} }}{{kn + \gamma^{2} \varphi p}} - 1} \right)\omega \varphi p < 0\), so \(max\left\{ {w_{1} ,w_{2} } \right\} = w_{2}\). Therefore, (i) \(Q_{w}^{*} > Q_{c}^{*}\), \(s_{w}^{*} > s_{c}^{*}\) if \(w < w_{1}\); (ii) \(Q_{w}^{*} \le Q_{c}^{*}\), \(s_{w}^{*} \ge s_{c}^{*}\) if \(w_{1} \le w \le w_{2}\); (iii) \(Q_{w}^{*} < Q_{c}^{*}\), \(s_{w}^{*} < s_{c}^{*}\) if \(w > w_{2}\).

Proof of Proposition 5

For the retailer and manufacturer, their optimal expected profits under the wholesale and consignment modes are as follows:

$$E\left[ {\pi_{R}^{w} \left( {Q_{w}^{*} ,s_{w}^{*} } \right)} \right] = \frac{{\left( {\varphi p - w} \right)\left[ {\left( {kn + \gamma^{2} \varphi p} \right)\left( {\varphi p - w} \right) + 2k\varphi p\left( {\theta a - b\varphi p} \right)} \right]}}{2k\varphi p}$$
(A.39)
$$E\left[ {\pi_{R}^{c} \left( {Q_{c}^{*} ,s_{c}^{*} } \right)} \right] = \frac{{\varphi {\text{p}}\left( {1 - \omega } \right)\left[ {kn + \gamma^{2} \varphi p\left( {1 - \omega } \right) + 2k\left( {\theta a - b\varphi p} \right)} \right]}}{2k}$$
(A.40)
$$E\left[ {\pi_{M}^{w} \left( {{\text{w}}^{*} } \right)} \right] = \frac{{\left( {w - c} \right)\left[ {\left( {kn + \gamma^{2} \varphi p} \right)\left( {\varphi p - w} \right) + k\varphi p\left( {\theta a - b\varphi p} \right)} \right]}}{k\varphi p}$$
(A.41)
$$E\left[ {\pi_{M}^{c} \left( {\omega^{*} } \right)} \right] = \frac{{\omega \varphi p\left[ {kn + 2\gamma^{2} \varphi p\left( {1 - \omega } \right) + 2k\left( {\theta a - b\varphi p} \right)} \right] - 2c\left[ {kn + \gamma^{2} \varphi p\left( {1 - \omega } \right) + k\left( {\theta a - b\varphi p} \right)} \right]}}{2k}$$
(A.42)

Comparing the optimal expected profits of the retailer:

$$\begin{gathered} E\left[ {\pi_{R}^{w} \left( {Q_{w}^{*} ,s_{w}^{*} } \right)} \right] - E\left[ {\pi_{R}^{c} \left( {Q_{c}^{*} ,s_{c}^{*} } \right)} \right] = \frac{1}{2}\left( {\frac{1}{k}\left( {w\gamma^{2} - 2k\theta a + \varphi p\left( {2bk + \gamma^{2} \left( { - 2 + \omega } \right)} \right)} \right)\left( {w - p\varphi \omega } \right) + n\left( { - 2w + \frac{{w^{2} }}{\varphi p} + \omega \varphi p} \right)} \right) \hfill \\ \end{gathered}$$
(A.43)

Taking the first and second partial derivative of \(E\left[ {\pi_{R}^{w} \left( {Q_{w}^{*} ,s_{w}^{*} } \right)} \right] - E\left[ {\pi_{R}^{c} \left( {Q_{c}^{*} ,s_{c}^{*} } \right)} \right]\) with \({{w}}\):

$$\frac{{\partial \left( {E\left[ {\pi_{R}^{w} \left( {Q_{w}^{*} ,s_{w}^{*} } \right)} \right] - E\left[ {\pi_{R}^{c} \left( {Q_{c}^{*} ,s_{c}^{*} } \right)} \right]} \right)}}{\partial w} = - \frac{{n\left( {\varphi p - w} \right)}}{\varphi p} - \frac{{\gamma^{2} \left( {\varphi p - w} \right) - k\left( {\theta a - b\varphi p} \right)}}{k}$$
(A.44)
$$\frac{{\partial^{2} \left( {E\left[ {\pi_{R}^{w} \left( {Q_{w}^{*} ,s_{w}^{*} } \right)} \right] - E\left[ {\pi_{R}^{c} \left( {Q_{c}^{*} ,s_{c}^{*} } \right)} \right]} \right)}}{{\partial w^{2} }} = \frac{{kn + \gamma^{2} \varphi p}}{k\varphi p} > 0$$
(A.45)

Let \(w_{3} = \frac{{A_{2} - \sqrt {A_{2}^{2} - A_{1} A_{3} } }}{{A_{1} }}\), \(w_{4} = \frac{{A_{2} + \sqrt {A_{2}^{2} - A_{1} A_{3} } }}{{A_{1} }}\). We can obtain: when \(w < w_{3}\) or \(w > w_{4}\), \(E\left[ {\pi_{R}^{w} \left( {Q_{w}^{*} ,s_{w}^{*} } \right)} \right] > E\left[ {\pi_{R}^{c} \left( {Q_{c}^{*} ,s_{c}^{*} } \right)} \right]\); when \(w_{3} \le w \le w_{4}\), \(E\left[ {\pi_{R}^{w} \left( {Q_{w}^{*} ,s_{w}^{*} } \right)} \right] \le E\left[ {\pi_{R}^{c} \left( {Q_{c}^{*} ,s_{c}^{*} } \right)} \right]\).

Comparing the optimal expected profits of the manufacturer:

$$\begin{aligned} E\left[ {\pi _{M}^{w} \left( {{\text{w}}^{*} } \right)} \right] - E\left[ {\pi _{M}^{c} \left( {\omega ^{*} } \right)} \right] = & \frac{{2c\left( {knw + \gamma ^{2} \varphi p\left( {w - \omega \varphi p} \right)} \right) + 2\gamma ^{2} \varphi p\left( { - w^{2} + w\varphi p + \left( { - 1 + \omega } \right)\omega \varphi ^{2} p^{2} } \right)}}{{2k\varphi p}} \\ & - \frac{{k\left[ {2\varphi p\left( {\theta a - b\varphi p} \right)\left( {\omega \varphi p - w} \right) + n\left( {2w^{2} - 2pw\varphi + p^{2} \varphi ^{2} \omega } \right)} \right]}}{{2k\varphi p}} \\ \end{aligned}$$
(A.46)

Taking the first and second partial derivative of \(E\left[ {\pi_{M}^{w} \left( {{\text{w}}^{*} } \right)} \right] - E\left[ {\pi_{M}^{c} \left( {\omega^{*} } \right)} \right]\) with \({\text{w}}\):

$$\frac{{\partial \left( {E\left[ {\pi_{M}^{w} \left( {{\text{w}}^{*} } \right)} \right] - E\left[ {\pi_{M}^{c} \left( {\omega^{*} } \right)} \right]} \right)}}{\partial w} = \frac{{\left( {kn + \gamma^{2} \varphi p} \right)\left( {\varphi p - 2w + c} \right) + k\varphi p\left( {\theta a - b\varphi p} \right)}}{k\varphi p}$$
(A.47)
$$\frac{{\partial^{2} \left( {E\left[ {\pi_{M}^{w} \left( {{\text{w}}^{*} } \right)} \right] - E\left[ {\pi_{M}^{c} \left( {\omega^{*} } \right)} \right]} \right)}}{{\partial w^{2} }} = \frac{{ - 2\left( {kn + \gamma^{2} \varphi p} \right)}}{k\varphi p} < 0$$
(A.48)

Let \(w_{5} = \frac{{A_{4} - \sqrt {A_{4}^{2} - A_{1} A_{5} } }}{{2A_{1} }}\), \(w_{6} = \frac{{A_{4} + \sqrt {A_{4}^{2} - A_{1} A_{5} } }}{{2A_{1} }}\). We can obtain: when \(w_{5} \le w \le w_{6}\), \(E\left[ {\pi_{M}^{w} \left( {{\text{w}}^{*} } \right)} \right] \ge E\left[ {\pi_{M}^{c} \left( {\omega^{*} } \right)} \right]\); when \(w < w_{5}\) or \(w > w_{6}\), \(E\left[ {\pi_{M}^{w} \left( {{\text{w}}^{*} } \right)} \right] < E\left[ {\pi_{M}^{c} \left( {\omega^{*} } \right)} \right]\).

Proof of Proposition 6

Setting: \(\theta a_{3} = b\varphi p - \frac{{3kn + 2\gamma^{2} \left( {\varphi p - c} \right)}}{2k}\), \(\theta a_{4} = b\varphi p - \frac{{\left( {kn + \gamma^{2} \varphi p} \right)\left( {\varphi p - c} \right)}}{k\varphi p}\), \(\theta a_{5} = b\varphi p + \frac{{2\gamma^{2} \left( {\varphi p - c} \right) - kn}}{2k}\), \(\theta a_{6} = b\varphi p + \frac{{\left( {kn + \gamma^{2} \varphi p} \right)\left( {\varphi p - c} \right)}}{k\varphi p}\). It can be obtained: \(Q_{w}^{**} > 0\) if \(a > a_{4}\); \(Q_{c}^{**} > 0\) if \(a > a_{3}\); \(s_{w}^{**} > 0\) if \(a < a_{6}\); \(s_{c}^{**} > 0\) if \(a < a_{5}\).

Comparing the relative sizes of \(a_{3} ,a_{4} ,a_{5} ,a_{6}\):

$$\theta a_{4} - \theta a_{3} = n\left( {\frac{1}{2} + \frac{c}{p\varphi }} \right) > 0$$
(A.49)
$$\theta a_{5} - \theta a_{6} = n\left( {\frac{3}{2} - \frac{c}{p\varphi }} \right) > 0$$
(A.50)
$$\theta a_{5} - \theta a_{4} = n\left( {\frac{1}{2} - \frac{c}{p\varphi }} \right) + \frac{{2\gamma^{2} \left( {\varphi p - c} \right)}}{k}$$
(A.51)

Hence, we can obtain: when \(c \le \frac{{\varphi p\left( {kn + 4\gamma^{2} \varphi p} \right)}}{{2\left( {kn + 2\gamma^{2} \varphi p} \right)}}\), \(a_{3} < a_{4} < a_{5} < a_{6}\); when \(c > \frac{{\varphi p\left( {kn + 4\gamma^{2} \varphi p} \right)}}{{2\left( {kn + 2\gamma^{2} \varphi p} \right)}}\), \(a_{3} < a_{5} < a_{4} < a_{6}\) Therefore, (i) \(Q_{w}^{**} = 0\), \(Q_{c}^{**} = 0\), \(s_{w}^{**} > 0\), \(s_{c}^{**} > 0\) if \(a < a_{3}\); (ii) \(Q_{w}^{**} > 0\), \(Q_{c}^{**} > 0\), \(s_{w}^{**} = 0\), \(s_{c}^{**} = 0\) if \(a > a_{6}\); (iii) When \(c \le \frac{{\varphi p\left( {kn + 4\gamma^{2} \varphi p} \right)}}{{2\left( {kn + 2\gamma^{2} \varphi p} \right)}}\), \(Q_{w}^{**} \ge 0\), \(Q_{c}^{**} > 0\), \(s_{w}^{**} > 0\), \(s_{c}^{**} \ge 0\) if \(a_{4} \le a \le a_{5}\); (iv) When \(c > \frac{{\varphi p\left( {kn + 4\gamma^{2} \varphi p} \right)}}{{2\left( {kn + 2\gamma^{2} \varphi p} \right)}}\), \(Q_{w}^{**} \ge 0\), \(Q_{c}^{**} > 0\), \(s_{w}^{**} \ge 0\), \(s_{c}^{**} = 0\) if \(a_{4} \le a \le a_{6}\).

Proof of Proposition 7

For the manufacturer and retailer, their optimal expected profits are as follows:

$$E\left[ {\pi_{M}^{w} \left( {{\text{w}}^{**} } \right)} \right] = \frac{{\left[ {\left( {\varphi p - c} \right)\left( {kn + \gamma^{2} \varphi p} \right) + k\varphi p\left( {\theta a - b\varphi p} \right)} \right]^{2} }}{{4k\varphi p\left( {kn + \gamma^{2} \varphi p} \right)}}$$
(A.52)
$$E\left[ {\pi_{M}^{c} \left( {\omega^{**} } \right)} \right] = \frac{1}{16}\left[ {\frac{{4\gamma^{2} \left( {\varphi p - c} \right)^{2} }}{k} + 4\varphi p\left( {n + 2\theta a - 2b\varphi p} \right) + \frac{{k\left( {n + 2\theta a - 2b\varphi p} \right)^{2} }}{{\gamma^{2} }} - 4c\left( {3n + 2\theta a - 2b\varphi p} \right)} \right]$$
(A.53)
$$\begin{aligned} E\left[ {\pi_{R}^{w} \left( {Q_{w}^{**} ,s_{w}^{**} } \right)} \right] = & \frac{{c^{2} \left( {kn + \gamma^{2} \varphi p} \right)}}{8k\varphi p} - \frac{{2c\left[ {\gamma^{2} \varphi p + kn + k\left( {\theta a - b\varphi p} \right)} \right]}}{8k} \\ & + \frac{{\varphi p\left[ {kn + \gamma^{2} \varphi p - k\left( {\theta a - b\varphi p} \right)} \right]\left[ {kn + \gamma^{2} \varphi p + 3k\left( {\theta a - b\varphi p} \right)} \right]}}{{8k\left( {kn + \gamma^{2} \varphi p} \right)}} \\ \end{aligned}$$
(A.54)
$$E\left[ {\pi_{R}^{c} \left( {Q_{c}^{**} ,s_{c}^{**} } \right)} \right] = - \frac{{\left[ {2\gamma^{2} \left( {c - \varphi p} \right) + kn + 2k\left( {\theta a - 2b\varphi p} \right)} \right]\left[ {2\gamma^{2} \left( {\varphi p - c} \right) + 3kn + 6k\left( {\theta a - 2b\varphi p} \right)} \right]}}{{32k\gamma^{2} }}$$
(A.55)

Comparing the optimal expected profits of the manufacturer:

$$E\left[ {\pi_{M}^{w} \left( {{\text{w}}^{**} } \right)} \right] - E\left[ {\pi_{M}^{c} \left( {\omega^{**} } \right)} \right] = \frac{{nc\left( {\varphi p + c} \right)}}{4\varphi p} - \frac{{kn\left( {\gamma^{2} \varphi p\left( {n + 4\theta a - 4b\varphi p} \right) + k\left( {n + 2\theta a - 2b\varphi p} \right)^{2} } \right)}}{{16\gamma^{2} \left( {kn + \gamma^{2} \varphi p} \right)}}$$
(A.56)

Taking the first and second partial derivative of \(E\left[ {\pi_{M}^{w} \left( {{\text{w}}^{**} } \right)} \right] - E\left[ {\pi_{M}^{c} \left( {\omega^{**} } \right)} \right]\) with \({{c}}\):

$$\frac{{\partial \left( {E\left[ {\pi_{M}^{w} \left( {{\text{w}}^{**} } \right)} \right] - E\left[ {\pi_{M}^{c} \left( {\omega^{**} } \right)} \right]} \right)}}{\partial c} = \frac{{n\left( {\varphi p + 2c} \right)}}{4\varphi p} > 0$$
(A.57)

Let \(c_{1} = \frac{{ - \gamma^{2} \varphi p\left( {kn + \gamma^{2} \varphi p} \right) + \sqrt {\gamma^{2} \varphi p\left( {kn + \gamma^{2} \varphi p} \right)\left[ {kn + \gamma^{2} \varphi p + 2k\left( {\theta {\text{a}} - b\varphi p} \right)} \right]^{2} } }}{{2\gamma^{2} \left( {kn + \gamma^{2} \varphi p} \right)}}\). We can obtain: when \(c \ge c_{1}\), \(E\left[ {\pi_{M}^{w} \left( {{\text{w}}^{**} } \right)} \right] \ge E\left[ {\pi_{M}^{c} \left( {\omega^{**} } \right)} \right]\); when \(0 < c < c_{1}\), \(E\left[ {\pi_{M}^{w} \left( {{\text{w}}^{**} } \right)} \right] < E\left[ {\pi_{M}^{c} \left( {\omega^{**} } \right)} \right]\).

Comparing the optimal expected profits of the retailer:

$$E\left[ {\pi_{R}^{w} \left( {Q_{w}^{**} ,s_{w}^{**} } \right)} \right] - E\left[ {\pi_{R}^{c} \left( {Q_{c}^{**} ,s_{c}^{**} } \right)} \right] = \frac{{3kn\left[ {\gamma^{2} \varphi p\left( {n + 4\theta a - 4b\varphi p} \right) + k\left( {n + 2\theta a - 2b\varphi p} \right)^{2} } \right]}}{{32\gamma^{2} \left( {kn + \gamma^{2} \varphi p} \right)}} - \frac{{nc\left( {\varphi p - c} \right)}}{8\varphi p}$$
(A.58)

Taking the first and second derivative of \(E\left[ {\pi_{R}^{w} \left( {Q_{w}^{**} ,s_{w}^{**} } \right)} \right] - E\left[ {\pi_{R}^{c} \left( {Q_{c}^{**} ,s_{c}^{**} } \right)} \right]\) with \({{c}}\):

$$\frac{{\partial \left( {E\left[ {\pi_{R}^{w} \left( {Q_{w}^{**} ,s_{w}^{**} } \right)} \right] - E\left[ {\pi_{R}^{c} \left( {Q_{c}^{**} ,s_{c}^{**} } \right)} \right]} \right)}}{\partial c} = \frac{{n\left( {2c - \varphi p} \right)}}{8\varphi p}$$
(A.59)
$$\frac{{\partial^{2} \left( {E\left[ {\pi_{R}^{w} \left( {Q_{w}^{**} ,s_{w}^{**} } \right)} \right] - E\left[ {\pi_{R}^{c} \left( {Q_{c}^{**} ,s_{c}^{**} } \right)} \right]} \right)}}{{\partial c^{2} }} = \frac{n}{4\varphi p} > 0$$
(A.60)

Let \(c_{2} = \frac{{B_{2} - \sqrt {B_{2}^{2} - B_{2} B_{3} } }}{{2B_{1} }}\), \(c_{3} = \frac{{B_{2} + \sqrt {B_{2}^{2} - B_{2} B_{3} } }}{{2B_{1} }}\). We can obtain: when \(c < c_{2}\) or \(c > c_{3}\), \(E\left[ {\pi_{R}^{w} \left( {Q_{w}^{**} ,s_{w}^{**} } \right)} \right] > E\left[ {\pi_{R}^{c} \left( {Q_{c}^{**} ,s_{c}^{**} } \right)} \right]\); when \(c_{2} \le c \le c_{3}\), \(E\left[ {\pi_{R}^{w} \left( {Q_{w}^{**} ,s_{w}^{**} } \right)} \right] \le E\left[ {\pi_{R}^{c} \left( {Q_{c}^{**} ,s_{c}^{**} } \right)} \right]\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, J., Ying, Z. & Wen, C. Distribution channel strategies of suboptimal food supply chain under demand uncertainty. Oper Res Int J 25, 35 (2025). https://doi.org/10.1007/s12351-025-00914-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12351-025-00914-4

Keywords