Abstract
The commercialization of edible suboptimal foods thrown away seems a promising lever for tackling food shortage and waste. This paper constructs a Stackelberg game model to analyze the optimal distribution channel decisions of the suboptimal food supply chain consisting of a manufacturer and a retailer under the wholesale and consignment mode, respectively. Moreover, this paper performs the sensitivity analysis of key parameters including suboptimal food demand potential, marketing service cost coefficient and retail price. The results show that the optimal distribution channel strategies of the manufacturer and retailer are obtained for those who are profit-driven under different conditions. The suboptimal food demand potential, the preference of consumers to the suboptimal food, marketing service cost coefficient, retail price and price discount are key factors. Interestingly, the Pareto improvement for the whole suboptimal food supply chain can be reached under consignment mode, which means that the manufacturer and retailer not only achieve higher expected profits but also reduce food waste. This study provides important support for increasing firms’ profits in the suboptimal food supply chain and promoting sustainable development from a game theoretic approach.









Similar content being viewed by others
References
Aschemann-Witzel J (2018) Consumer perception and preference for suboptimal food under the emerging practice of expiration date based pricing in supermarkets. Food Qual Prefer 63:119–128. https://doi.org/10.1016/j.foodqual.2017.08.007
Aschemann-Witzel J, Giménez A, Ares G (2020a) Suboptimal food, careless store? Consumer’s associations with stores selling foods with imperfections to counter food waste in the context of an emerging retail market. J Clean Prod 262:121252. https://doi.org/10.1016/j.jclepro.2020.121252
Aschemann-Witzel J, Otterbring T, De Hooge IE, Normann A, Rohm H, Almli VL, Oostindjer M (2020b) Consumer associations about other buyers of suboptimal food—and what it means for food waste avoidance actions. Food Qual Prefer 80:103808. https://doi.org/10.1016/j.foodqual.2019.103808
Aschemann-Witzel J, De Hooge IE, Almli VL (2021) My style, my food, my waste! Consumer food waste-related lifestyle segments. J Retail Consum Serv 59:102353. https://doi.org/10.1016/j.jretconser.2020.102353
Aschemann-Witzel J, Randers L, Pedersen S (2022) Retail or consumer responsibility?—Reflections on food waste and food prices among deal-prone consumers and market actors. Bus Strateg Environ 32(4):1513–1528. https://doi.org/10.1002/bse.3202
Askarian-Amiri F, Paydar MM, Safaei AS (2021) Designing a dual-channel supply chain network considering dependent demand and discount. RAIRO Operations Res 55:S2325–S2347. https://doi.org/10.1051/ro/2020079
Bai L, Cao S, Gong S, Huang L (2022) Motivations and obstructions of minimizing suboptimal food waste in Chinese households. J Clean Prod 342:130951. https://doi.org/10.1016/j.jclepro.2022.130951
Bart N, Chernonog T, Avinadav T (2021) Revenue-sharing contracts in supply chains: a comprehensive literature review. Int J Prod Res 59(21):6633–6658. https://doi.org/10.1080/00207543.2020.1821929
Ben Hassen T, El Bilali H (2022) Impacts of the Russia-Ukraine War on global food security: towards more sustainable and resilient food systems? Foods 11(15):2301. https://doi.org/10.3390/foods11152301
Cai J, Jia L, Hu X (2023) Operation decision model in a platform ecosystem for car-sharing service. Electron Commer Res Appl 59:101262. https://doi.org/10.1016/j.elerap.2023.101262
Cao X, Fang X (2019) Component procurement for an assembly supply chain with random capacities and random demand. Decis Sci 50(6):1259–1280. https://doi.org/10.1111/deci.12371
Cao S, Gong S, Bai L (2022) Situational variables that affect consumers’ suboptimal food purchasing behavior in China. Br Food J 125(1):145–166. https://doi.org/10.1108/BFJ-09-2021-1074
Chang H-H, Lu L-C, Kuo T-C (2024) Are discounts useful in promoting suboptimal foods for sustainable consumption and production? The interaction effects of original prices, discount presentation modes, and product types. J Retail Consum Serv 79:103881. https://doi.org/10.1016/j.jretconser.2024.103881
Chen L, Peng J, Liu Z, Zhao R (2017) Pricing and effort decisions for a supply chain with uncertain information. Int J Prod Res 55(1):264–284. https://doi.org/10.1080/00207543.2016.1204475
Chen L, Nan G, Li M (2018) Wholesale pricing or agency pricing on online retail platforms: the effects of customer loyalty. Int J Electron Commer 22(4):576–608. https://doi.org/10.1080/10864415.2018.1485086
Chen YJ, Ho W-H, Kuo H-WH, Kao T-W (2020) Repositioning conflicting partners under inventory risks. IEEE Trans Eng Manage 67(2):454–465. https://doi.org/10.1109/TEM.2018.2884917
Chen L, Nan G, Li M, Feng B, Liu Q (2023) Manufacturer’s online selling strategies under spillovers from online to offline sales. J Operat Res Soc 74(1):157–180. https://doi.org/10.1080/01605682.2022.2032426
De Giovanni P, Karray S, Martín-Herrán G (2019) Vendor management inventory with consignment contracts and the benefits of cooperative advertising. Eur J Oper Res 272(2):465–480. https://doi.org/10.1016/j.ejor.2018.06.031
De Hooge IE, Oostindjer M, Aschemann-Witzel J, Normann A, Loose SM, Almli VL (2017) This apple is too ugly for me! Food Qual Prefer 56:80–92. https://doi.org/10.1016/j.foodqual.2016.09.012
El Ouardighi F, Kim B (2010) Supply quality management with wholesale price and revenue-sharing contracts under horizontal competition. Eur J Oper Res 206(2):329–340. https://doi.org/10.1016/j.ejor.2010.02.035
Fan X, Zhang J, Zhu G (2020) Effects of consumers’ uncertain valuation-for-quality in a distribution channel. Ann Oper Res 329(1–2):501–526. https://doi.org/10.1007/s10479-020-03847-7
Fiestras-Janeiro MG, García-Jurado I, Meca A, Mosquera MA (2011) Cooperative game theory and inventory management. Eur J Oper Res 210(3):459–466. https://doi.org/10.1016/j.ejor.2010.06.025
Giménez A, Aschemann-Witzel J, Ares G (2021) Exploring barriers to consuming suboptimal foods: a consumer perspective. Food Res Int 141:110106. https://doi.org/10.1016/j.foodres.2021.110106
Hartmann T, Jahnke B, Hamm U (2021) Making ugly food beautiful: consumer barriers to purchase and marketing options for suboptimal food at retail level—a systematic review. Food Qual Prefer 90:104–179. https://doi.org/10.1016/j.foodqual.2021.104179
Huang M, Zhang Y, Fan H (2022) Research on retail channel decisions considering consumer’s fairness concern. RAIRO Operat Res 56(1):23–47. https://doi.org/10.1051/ro/2021171
Jamali M-B, Gorji M-A, Iranpoor M (2021) Pricing policy on a dual competitive channel for a green product under fuzzy conditions. Neural Comput Appl 33(17):11189–11201. https://doi.org/10.1007/s00521-020-05567-2
Jiang Z-Z, Zhao J, Zhang Y, Yi Z (2022) Unraveling the cheap talk’s informativeness of product quality in supply chains: A lying aversion perspective. Trans Res Part e: Logistics Transport Rev 166:102873. https://doi.org/10.1016/j.tre.2022.102873
Ke J, Jia W, Zhou Y, Wang X (2024) Disruption risk analysis of substitutable dual product supply chain: a system dynamics framework. Discret Dyn Nat Soc 2024:9920879. https://doi.org/10.1155/2024/9920879
Liu C, Chen W (2019) Decision making in green supply chains under the impact of the stochastic and multiple-variable dependent reference point. Transp Res Part e: Logist Transport Rev 128:443–469. https://doi.org/10.1016/j.tre.2019.06.011
Liu H, McCarthy B (2023) Sustainable lifestyles, eating out habits and the green gap: a study of food waste segments. Asia Pac J Mark Logist 35(4):920–943. https://doi.org/10.1108/APJML-07-2021-0538
Liu H, Kou X, Liu H, Gao H, Zhao X (2022) Which operating mode is the best? Consider different combinations of sales contracts and service methods. Comput Ind Eng 168:108069. https://doi.org/10.1016/j.cie.2022.108069
Lu F, Zhang J, Tang W (2019) Wholesale price contract versus consignment contract in a supply chain considering dynamic advertising. Int Trans Oper Res 26(5):1977–2003. https://doi.org/10.1111/itor.12388
Luo H, Zhong L, Nie J (2022) Quality and distribution channel selection on a hybrid platform. Transp Res Part e: Logist Transp Rev 163:102750. https://doi.org/10.1016/j.tre.2022.102750
Makhal A, Robertson K, Thyne M, Mirosa M (2021) Normalising the “ugly” to reduce food waste: exploring the socialisations that form appearance preferences for fresh fruits and vegetables. J Consum Behav 20(5):1025–1039. https://doi.org/10.1002/cb.1908
Mookerjee S, Cornil Y, Hoegg J (2021) From waste to taste: how “Ugly” labels can increase purchase of unattractive produce. J Mark 85(3):62–77. https://doi.org/10.1177/0022242920988656
Musavi M, Taleizadeh AA, Bozorgi-Amiri A, Moshtagh MS (2022) Pricing decisions of organic and conventional products in a dual-channel competitive food supply chain. Ann Oper Res. https://doi.org/10.1007/s10479-022-05009-3
Pei H, Li H, Liu Y (2022) Optimizing a robust capital-constrained dual-channel supply chain under demand distribution uncertainty. Expert Syst Appl 204:117546. https://doi.org/10.1016/j.eswa.2022.117546
Pei H, Liu Y, Li H (2023) Robust pricing for a dual-channel green supply chain under fuzzy demand ambiguity. IEEE Trans Fuzzy Syst 31(1):53–66. https://doi.org/10.1109/TFUZZ.2022.3181465
Shi N, Zhou S, Wang F, Xu S, Xiong S (2014) Horizontal cooperation and information sharing between suppliers in the manufacturer–supplier triad. Int J Prod Res 52(15):4526–4547. https://doi.org/10.1080/00207543.2013.869630
Stangherlin ID, Duarte Ribeiro JL, Barcellos M (2019) Consumer behaviour towards suboptimal food products: a strategy for food waste reduction. Br Food J 121(10):2396–2412
Sun J, Yuan P, Hua L (2023) Pricing and financing strategies of a dual-channel supply chain with a capital-constrained manufacturer. Ann Oper Res 329(1–2):1241–1261. https://doi.org/10.1007/s10479-022-04602-w
Supply Chain Architecture (2005) A blueprint for networking the flow of material, information and cash. Int J Oper Prod Manag 25(11):1156–1156. https://doi.org/10.1108/01443570510626934
Szymkowiak A, Antoniak MA, Maślana N (2024) Changing consumer attitudes towards suboptimal foods: The effect of zero waste labeling. Food Qual Prefer 114:105095. https://doi.org/10.1016/j.foodqual.2023.105095
Tait P, Saunders C, Dalziel P, Rutherford P, Driver T, Guenther M (2024) How much less? Estimating price discounts for suboptimal food with environmental and social credence attributes. Appl Econ 56(13):1581–1594. https://doi.org/10.1080/00036846.2023.2176460
Tao F, Xie Y, Wang Y-Y, Lai F, Lai KK (2022) Contract strategies in competitive supply chains subject to inventory inaccuracy. Ann Oper Res 309(2):641–661. https://doi.org/10.1007/s10479-021-03969-6
Van Giesen RI, De Hooge IE (2019) Too ugly, but I love its shape: reducing food waste of suboptimal products with authenticity (and sustainability) positioning. Food Qual Prefer 75:249–259. https://doi.org/10.1016/j.foodqual.2019.02.020
Varese E, Cesarani MC, Wojnarowska M (2023) Consumers’ perception of suboptimal food: Strategies to reduce food waste. Br Food J 125(1):361–378. https://doi.org/10.1108/BFJ-07-2021-0809
Wang R, Zhou X, Li B (2022) Pricing strategy of dual-channel supply chain with a risk-averse retailer considering consumers’ channel preferences. Ann Oper Res 309(1):305–324. https://doi.org/10.1007/s10479-021-04326-3
White K, Lin L, Dahl DW, Ritchie RJB (2016) When do consumers avoid imperfections? Superficial packaging damage as a contamination cue. J Mark Res 53(1):110–123. https://doi.org/10.1509/jmr.12.0388
Xia L, Li K, Wang J, Xia Y, Qin J (2024) Carbon emission reduction and precision marketing decisions of a platform supply chain. Int J Prod Econ 268:109104. https://doi.org/10.1016/j.ijpe.2023.109104
Xu H, Shi N, Ma S, Lai KK (2010) Contracting with an urgent supplier under cost information asymmetry. Eur J Oper Res 206(2):374–383. https://doi.org/10.1016/j.ejor.2010.03.012
Zhang S, Zhang J (2020) Agency selling or reselling: E-tailer information sharing with supplier offline entry. Eur J Oper Res 280(1):134–151. https://doi.org/10.1016/j.ejor.2019.07.003
Zhang D, De Matta R, Lowe TJ (2010) Channel coordination in a consignment contract. Eur J Oper Res 207(2):897–905. https://doi.org/10.1016/j.ejor.2010.05.027
Zhang T, Choi TM, Cheng TC (2024) Competitive pricing and product strategies in the presence of consumers’ social comparisons. Europ J Operat Res 312(2):573–586
Zhong L, Nie J, Lim MK, Xia S (2022) Agency or self-run: the effect of consumer green education on recyclers’ distribution channel choice under platform economy. Int J Log Res Appl 25(4–5):814–836. https://doi.org/10.1080/13675567.2021.1926949
Zhong B, Shen H, Zhang J, Gao X (2023) Agency or wholesale? Retail selling format in the presence of new manufacturer introduction. Electron Commer Res 23(4):2291–2325. https://doi.org/10.1007/s10660-022-09535-x
Zhu J, Feng T, Lu Y, Jiang W (2024) Using blockchain or not? A focal firm’s blockchain strategy in the context of carbon emission reduction technology innovation. Bus Strateg Environ 33(4):3505–3531. https://doi.org/10.1002/bse.3664
Zu Y, Deng D, Chen L (2021) Optimal control of carbon emission reduction strategies in supply chain with wholesale price and consignment contract. Environ Sci Pollut Res 28(43):61707–61722. https://doi.org/10.1007/s11356-021-15080-1
Acknowledgements
This research is funded by the Zhejiang Province’s 14th Five-Year Postgraduate’s Ideological and Political Course: Logistics and Supply Chain Management; Hangzhou Dianzi University (Grant No. YJSKCSZ202312).
Funding
Zhejiang Province’s 14th Five-Year Postgraduate’s Ideological and Political Course: Logistics and Supply Chain Management, Hangzhou Dianzi University, YJSKCSZ202312, Jie Wei.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendices
Appendix: Proof of Lemma 1
The first partial derivative of \(E\left[ {\pi_{R} \left( {Q_{w} ,s_{w} } \right)} \right]\) with respect to \(Q_{w}\), \(s_{w}\):
The second derivative of \(E\left[ {\pi \left( {Q_{w} ,s_{w} } \right)} \right]\) with \(Q_{w}\), \(s_{w}\): \(\frac{{\partial^{2} E\left[ {\pi_{R} \left( {Q_{w} ,s_{w} } \right)} \right]}}{{\partial Q_{w}^{2} }} = - \frac{{\beta^{2} \varphi p}}{n} < 0\), \(\frac{{\partial^{2} E\left[ {\pi_{R} \left( {Q_{w} ,s_{w} } \right)} \right]}}{{\partial s_{w}^{2} }} = - k - \frac{{\gamma^{2} \varphi p}}{n} < 0\). And \(\frac{{\partial^{2} E\left[ {\pi_{R} \left( {Q_{w} ,s_{w} } \right)} \right]}}{{\partial Q_{w} \partial s_{w} }} = \frac{p\beta \gamma \varphi }{n}\).
The Hessian matrix of \(E\left[ {\pi_{R} \left( {Q_{w} ,s_{w} } \right)} \right]\) is verified the joint concavity on \(Q_{w}\), \(s_{w}\):
The expected profit of the retailer is joint concavity on \(Q_{w}\), \(s_{w}\): \(Q_{w}^{*} = \frac{{\left( {\varphi p - w} \right)\left( {kn + \gamma^{2} \varphi p} \right)}}{k\beta \varphi p} + \frac{\theta a - b\varphi p}{\beta }\), \(s_{w}^{*} = \frac{{\gamma \left( {\varphi p - w} \right)}}{k}\). Moreover, only the potential market demand hold: \(\theta a > b\varphi p - \frac{{\left( {\varphi p - w} \right)\left( {kn + \gamma^{2} \varphi p} \right)}}{k\varphi p}\), the retailer is willing to sell SFs under the wholesale mode.
Proof of Proposition 1
According to Lemma 1, we substitute \(Q_{w}^{*}\), \(s_{w}^{*}\) into \(E\left[ {\pi_{M} \left( {Q_{w} ,s_{w} ,w} \right)} \right]\), then the first and second partial derivatives of \(E\left[ {\pi_{M} \left( w \right)} \right]\) with \(w\):
The manufacturer’s expected profit is concave in \(w\). By solving \({{\partial E\left[ {\pi_{M} \left( w \right)} \right]} \mathord{\left/ {\vphantom {{\partial E\left[ {\pi_{M} \left( w \right)} \right]} {\partial w}}} \right. \kern-0pt} {\partial w}} = 0\), the optimal wholesale price is obtained: \(w^{**} = \frac{1}{2}\left( {c + \frac{{p\varphi \left[ {\gamma^{2} \varphi p + kn + k\left( {\theta a - bp\varphi } \right)} \right]}}{{kn + \gamma^{2} \varphi p}}} \right)\).
Substituting \(w^{**}\) into \(Q_{w}^{*}\), \(s_{w}^{*}\), the retailer’s optimal order quantity and marketing service level are obtained: \(Q_{w}^{**} = \frac{{\left( {\varphi p - c} \right)\left( {kn + \gamma^{2} \varphi p} \right) + k\varphi p\left( {\theta a - b\varphi p} \right)}}{{{\text{2k}}\beta \varphi p}}\), \(s_{w}^{**} = \frac{{\gamma \left[ {\left( {\varphi p - c} \right)\left( {kn + \gamma^{2} \varphi p} \right) - k\varphi p\left( {\theta a - b\varphi p} \right)} \right]}}{{2k\left( {kn + \gamma^{2} \varphi p} \right)}}\).
To ensure that SFSC is willing to provide and sell SFs, it must hold: \(Q_{w}^{**} > 0\), \(s_{w}^{**} > 0\), \(w^{**} > 0\). Therefore, the potential market demand must hold: \(b\varphi p - \frac{{\left( {\varphi p - c} \right)\left( {kn + \gamma^{2} \varphi p} \right)}}{k\varphi p} < \theta a < b\varphi p + \frac{{\left( {\varphi p - c} \right)\left( {kn + \gamma^{2} \varphi p} \right)}}{k\varphi p}\).
Proof of Corollary 1
(i) Solving the first partial derivative of \(Q_{w}^{**}\) with \({\text{a}}\), \(\lambda\), \({\text{k}}\), \({\text{p}}\), respectively:
(ii) Solving the first partial derivative of \(s_{w}^{**}\) with \({\text{a}}\), \(\lambda\), \({\text{k}}\), \(\varphi\), respectively:
Given \(\theta a < b\varphi p + \frac{{\left( {\varphi p - c} \right)\left( {kn + \gamma^{2} \varphi p} \right)}}{k\varphi p}\), Then \(\frac{{\partial s_{w}^{**} }}{\partial k} < - \frac{{\gamma^{3} \varphi p\left( {\varphi p - c} \right)}}{{2k^{2} \left( {kn + \gamma^{2} \varphi p} \right)}} < 0\).
Given \(\theta a < b\varphi p + \frac{{\left( {\varphi p - c} \right)\left( {kn + \gamma^{2} \varphi p} \right)}}{k\varphi p}\), Then \(\frac{{\partial s_{w}^{**} }}{\partial \varphi } > \frac{\gamma p}{{2k}}\left[ {\frac{ka\varphi p}{{V\left( {1 - \lambda } \right)}} + \gamma^{2} \varphi p + kb\varphi p + \frac{knc}{{\varphi p}}} \right] > 0\).
(iii) Solving the first partial derivative of \(w^{**}\) with \({\text{a}}\), \(\lambda\), \({\text{k}}\), \({\text{p}}\), respectively:
Proof of Lemma 2
Taking the first derivative of \(E\left[ {\pi_{R} \left( {Q_{c} ,s_{c} } \right)} \right]\) with respect to \(Q_{c}\), \(s_{c}\):
Then solving the second partial derivative of \(E\left[ {\pi \left( {Q_{c} ,s_{c} } \right)} \right]\) with \(Q_{c}\), \(s_{c}\): \(\frac{{\partial^{2} E\left[ {\pi_{R} \left( {Q_{c} ,s_{c} } \right)} \right]}}{{\partial Q_{c}^{2} }} = \frac{{\beta^{2} \varphi p\left( {\omega - 1} \right)}}{n} < 0\), \(\frac{{\partial^{2} E\left[ {\pi_{R} \left( {Q_{c} ,s_{c} } \right)} \right]}}{{\partial s_{c}^{2} }} = - k - \frac{{\gamma^{2} \varphi p\left( {1 - \omega } \right)}}{n} < 0\). And \(\frac{{\partial^{2} E\left[ {\pi_{R} \left( {Q_{c} ,s_{c} } \right)} \right]}}{{\partial Q_{c} \partial s_{c} }} = \frac{{p\beta \gamma \varphi \left( {1 - \omega } \right)}}{n}\).
The Hessian matrix of \(E\left[ {\pi_{R} \left( {Q_{c} ,s_{c} } \right)} \right]\) is verified the joint concavity on \(Q_{c}\), \(s_{c}\):
The expected profit of the retailer is concave on \(Q_{c}\), \(s_{c}\). Then we get \(Q_{c}^{*} = \frac{{kn + \left( {1 - \omega } \right)\gamma^{2} \varphi p}}{k\beta } + \frac{\theta a - b\varphi p}{\beta }\), \(s_{c}^{*} = \frac{{\left( {1 - \omega } \right)\gamma \varphi p}}{k}\). Moreover, only the potential market demand hold: \(\theta a > b\varphi p - \frac{{kn + \left( {1 - \omega } \right)\gamma^{2} \varphi p}}{k}\), the retailer is willing to sell SFs under the consignment mode.
Proof of Proposition 2
According to Lemma 2, we substitute \(Q_{c}^{*}\), \(s_{c}^{*}\) into \(E\left[ {\pi_{M} \left( {Q_{c} ,s_{c} ,\omega } \right)} \right]\), then the first and second partial derivatives of \(E\left[ {\pi_{M} \left( \omega \right)} \right]\) with \(\omega\):
So the manufacturer’s expected profit is concave in \(\omega\). By solving \(\frac{{\partial E\left[ {\pi_{M} \left( \omega \right)} \right]}}{\partial \omega } = 0\), the manufacturer’s optimal consignment revenue-sharing ratio is \(\omega^{**} = \frac{{2\gamma^{2} \left( {\varphi p + c} \right) + kn + 2k\left( {\theta a - b\varphi p} \right)}}{{4\gamma^{2} \varphi p}}\).
Substituting \(\omega^{**}\) into \(Q_{c}^{*}\), \(s_{c}^{*}\), the retailer’s optimal order quantity \(Q_{c}^{**} = \frac{{2\gamma^{2} \left( {\varphi p - c} \right) + 3kn + 2k\left( {\theta a - b\varphi p} \right)}}{4k\beta }\) and service level \(s_{c}^{**} = \frac{{2\gamma^{2} \left( {\varphi p - c} \right) - kn - 2k\left( {\theta a - b\varphi p} \right)}}{4k\gamma }\) are obtained.
In order to ensure that SFSC can be willing to provide and sell SFs, it must hold: \(Q_{c}^{**} > 0\),\(s_{c}^{**} > 0\), \(\omega^{**} > 0\). Therefore, the potential market demand must hold: \({\text{max}}\left\{ {b\varphi p - \frac{{2\gamma^{2} \left( {\varphi p - c} \right) + 3kn}}{2k},b\varphi p - \frac{{2\gamma^{2} \left( {\varphi p + c} \right) + kn}}{2k}} \right\} < \theta a < b\varphi p + \frac{{2\gamma^{2} \left( {\varphi p - c} \right) - kn}}{2k}\).
Proof of Corollary 2
(i) Solving the first partial derivative of \(Q_{c}^{**}\) with \({\text{a}}\), \(\lambda\), \({\text{k}}\), \({\text{p}}\), respectively:
(ii) Solving the first partial derivative of \(s_{w}^{**}\) with \({\text{a}}\), \(\lambda\), \({\text{k}}\), \(\varphi\), respectively:
(iii) Solving the first partial derivative of \(\omega^{**}\) with \({\text{a}}\), \(\lambda\), \({\text{k}}\), \({\text{p}}\), respectively:
Proof of Proposition 3
To make sure that the retailer is willing to operate under two modes, i.e., \(Q_{w}^{*} > 0\), \(Q_{c}^{*} > 0\), We set: \(\theta a_{1} = b\varphi p - \frac{{\left( {kn + \gamma^{2} \varphi p} \right)\left( {\varphi p - w} \right)}}{k\varphi p}\), \(\theta a_{2} = b\varphi p - \frac{{kn + \gamma^{2} \varphi p\left( {1 - \omega } \right)}}{k}\). If \(a > a_{1}\), \(Q_{w}^{*} > 0\); If \(a > a_{2}\), \(Q_{c}^{*} > 0\). Comparing \(a_{1}\) and \(a_{2}\), only \(a > max\left\{ {a_{1} ,a_{2} } \right\}\), \(Q_{w}^{*} ,Q_{c}^{*} > 0\) and vice versa. \(\theta a_{1} - \theta a_{2} = \frac{nw}{{\varphi p}} + \frac{{\gamma^{2} \left( {w - \omega \varphi p} \right)}}{k}\). When \({\text{w}} \ge \frac{{\omega \left( {\gamma \varphi {\text{p}}} \right)^{2} }}{{kn + \gamma^{2} \varphi {\text{p}}}}\), \(a_{1} \ge a_{2}\); and when \({\text{w}} < \frac{{\omega \left( {\gamma \varphi {\text{p}}} \right)^{2} }}{{kn + \gamma^{2} \varphi {\text{p}}}}\), \(a_{1} < a_{2}\).
Therefore, when \({\text{w}} \ge \frac{{\omega \left( {\gamma \varphi {\text{p}}} \right)^{2} }}{{kn + \gamma^{2} \varphi {\text{p}}}}\): (i) \(Q_{w}^{*} > 0\), \(Q_{c}^{*} > 0\) if \(a > a_{1}\); (ii) \(Q_{w}^{*} \ge 0\), \(Q_{c}^{*} = 0\) if \(a_{2} \le a \le a_{1}\); (iii) \(Q_{w}^{*} = 0\), \(Q_{c}^{*} = 0\) if \(a \le a_{2}\); when \({\text{w}} < \frac{{\omega \left( {\gamma \varphi {\text{p}}} \right)^{2} }}{{kn + \gamma^{2} \varphi {\text{p}}}}\): (i) \(Q_{w}^{*} > 0\), \(Q_{c}^{*} > 0\) if \(a > a_{2}\); (ii) \(Q_{w}^{*} = 0\), \(Q_{c}^{*} \ge 0\) if \(a_{1} \le a \le a_{2}\); (iii) \(Q_{w}^{*} = 0\), \(Q_{c}^{*} = 0\) if \(a \le a_{1}\).
Proof of Proposition 4
The comparison of the optimal order quantity and marketing service level are as follows:
Solving the first partial derivative of \(Q_{w}^{*} - Q_{c}^{*}\) with \({\text{w}}\):
Let \(w_{1} = {{\omega \left( {\gamma \varphi p} \right)^{2} } \mathord{\left/ {\vphantom {{\omega \left( {\gamma \varphi p} \right)^{2} } {\left( {kn + \gamma^{2} \varphi p} \right)}}} \right. \kern-0pt} {\left( {kn + \gamma^{2} \varphi p} \right)}}\), we can get: if \(w < w_{1}\), \(Q_{w}^{*} > Q_{c}^{*}\).
Solving the first partial derivative of \(s_{w}^{*} - s_{c}^{*}\) with \({{w}}\):
Let \(w_{2} = \omega \varphi p\), we can get: if \(w < w_{2}\), \(s_{w}^{*} > s_{c}^{*}\).
Obviously, \(w_{1} - w_{2} = \left( {\frac{{\gamma^{2} }}{{kn + \gamma^{2} \varphi p}} - 1} \right)\omega \varphi p < 0\), so \(max\left\{ {w_{1} ,w_{2} } \right\} = w_{2}\). Therefore, (i) \(Q_{w}^{*} > Q_{c}^{*}\), \(s_{w}^{*} > s_{c}^{*}\) if \(w < w_{1}\); (ii) \(Q_{w}^{*} \le Q_{c}^{*}\), \(s_{w}^{*} \ge s_{c}^{*}\) if \(w_{1} \le w \le w_{2}\); (iii) \(Q_{w}^{*} < Q_{c}^{*}\), \(s_{w}^{*} < s_{c}^{*}\) if \(w > w_{2}\).
Proof of Proposition 5
For the retailer and manufacturer, their optimal expected profits under the wholesale and consignment modes are as follows:
Comparing the optimal expected profits of the retailer:
Taking the first and second partial derivative of \(E\left[ {\pi_{R}^{w} \left( {Q_{w}^{*} ,s_{w}^{*} } \right)} \right] - E\left[ {\pi_{R}^{c} \left( {Q_{c}^{*} ,s_{c}^{*} } \right)} \right]\) with \({{w}}\):
Let \(w_{3} = \frac{{A_{2} - \sqrt {A_{2}^{2} - A_{1} A_{3} } }}{{A_{1} }}\), \(w_{4} = \frac{{A_{2} + \sqrt {A_{2}^{2} - A_{1} A_{3} } }}{{A_{1} }}\). We can obtain: when \(w < w_{3}\) or \(w > w_{4}\), \(E\left[ {\pi_{R}^{w} \left( {Q_{w}^{*} ,s_{w}^{*} } \right)} \right] > E\left[ {\pi_{R}^{c} \left( {Q_{c}^{*} ,s_{c}^{*} } \right)} \right]\); when \(w_{3} \le w \le w_{4}\), \(E\left[ {\pi_{R}^{w} \left( {Q_{w}^{*} ,s_{w}^{*} } \right)} \right] \le E\left[ {\pi_{R}^{c} \left( {Q_{c}^{*} ,s_{c}^{*} } \right)} \right]\).
Comparing the optimal expected profits of the manufacturer:
Taking the first and second partial derivative of \(E\left[ {\pi_{M}^{w} \left( {{\text{w}}^{*} } \right)} \right] - E\left[ {\pi_{M}^{c} \left( {\omega^{*} } \right)} \right]\) with \({\text{w}}\):
Let \(w_{5} = \frac{{A_{4} - \sqrt {A_{4}^{2} - A_{1} A_{5} } }}{{2A_{1} }}\), \(w_{6} = \frac{{A_{4} + \sqrt {A_{4}^{2} - A_{1} A_{5} } }}{{2A_{1} }}\). We can obtain: when \(w_{5} \le w \le w_{6}\), \(E\left[ {\pi_{M}^{w} \left( {{\text{w}}^{*} } \right)} \right] \ge E\left[ {\pi_{M}^{c} \left( {\omega^{*} } \right)} \right]\); when \(w < w_{5}\) or \(w > w_{6}\), \(E\left[ {\pi_{M}^{w} \left( {{\text{w}}^{*} } \right)} \right] < E\left[ {\pi_{M}^{c} \left( {\omega^{*} } \right)} \right]\).
Proof of Proposition 6
Setting: \(\theta a_{3} = b\varphi p - \frac{{3kn + 2\gamma^{2} \left( {\varphi p - c} \right)}}{2k}\), \(\theta a_{4} = b\varphi p - \frac{{\left( {kn + \gamma^{2} \varphi p} \right)\left( {\varphi p - c} \right)}}{k\varphi p}\), \(\theta a_{5} = b\varphi p + \frac{{2\gamma^{2} \left( {\varphi p - c} \right) - kn}}{2k}\), \(\theta a_{6} = b\varphi p + \frac{{\left( {kn + \gamma^{2} \varphi p} \right)\left( {\varphi p - c} \right)}}{k\varphi p}\). It can be obtained: \(Q_{w}^{**} > 0\) if \(a > a_{4}\); \(Q_{c}^{**} > 0\) if \(a > a_{3}\); \(s_{w}^{**} > 0\) if \(a < a_{6}\); \(s_{c}^{**} > 0\) if \(a < a_{5}\).
Comparing the relative sizes of \(a_{3} ,a_{4} ,a_{5} ,a_{6}\):
Hence, we can obtain: when \(c \le \frac{{\varphi p\left( {kn + 4\gamma^{2} \varphi p} \right)}}{{2\left( {kn + 2\gamma^{2} \varphi p} \right)}}\), \(a_{3} < a_{4} < a_{5} < a_{6}\); when \(c > \frac{{\varphi p\left( {kn + 4\gamma^{2} \varphi p} \right)}}{{2\left( {kn + 2\gamma^{2} \varphi p} \right)}}\), \(a_{3} < a_{5} < a_{4} < a_{6}\) Therefore, (i) \(Q_{w}^{**} = 0\), \(Q_{c}^{**} = 0\), \(s_{w}^{**} > 0\), \(s_{c}^{**} > 0\) if \(a < a_{3}\); (ii) \(Q_{w}^{**} > 0\), \(Q_{c}^{**} > 0\), \(s_{w}^{**} = 0\), \(s_{c}^{**} = 0\) if \(a > a_{6}\); (iii) When \(c \le \frac{{\varphi p\left( {kn + 4\gamma^{2} \varphi p} \right)}}{{2\left( {kn + 2\gamma^{2} \varphi p} \right)}}\), \(Q_{w}^{**} \ge 0\), \(Q_{c}^{**} > 0\), \(s_{w}^{**} > 0\), \(s_{c}^{**} \ge 0\) if \(a_{4} \le a \le a_{5}\); (iv) When \(c > \frac{{\varphi p\left( {kn + 4\gamma^{2} \varphi p} \right)}}{{2\left( {kn + 2\gamma^{2} \varphi p} \right)}}\), \(Q_{w}^{**} \ge 0\), \(Q_{c}^{**} > 0\), \(s_{w}^{**} \ge 0\), \(s_{c}^{**} = 0\) if \(a_{4} \le a \le a_{6}\).
Proof of Proposition 7
For the manufacturer and retailer, their optimal expected profits are as follows:
Comparing the optimal expected profits of the manufacturer:
Taking the first and second partial derivative of \(E\left[ {\pi_{M}^{w} \left( {{\text{w}}^{**} } \right)} \right] - E\left[ {\pi_{M}^{c} \left( {\omega^{**} } \right)} \right]\) with \({{c}}\):
Let \(c_{1} = \frac{{ - \gamma^{2} \varphi p\left( {kn + \gamma^{2} \varphi p} \right) + \sqrt {\gamma^{2} \varphi p\left( {kn + \gamma^{2} \varphi p} \right)\left[ {kn + \gamma^{2} \varphi p + 2k\left( {\theta {\text{a}} - b\varphi p} \right)} \right]^{2} } }}{{2\gamma^{2} \left( {kn + \gamma^{2} \varphi p} \right)}}\). We can obtain: when \(c \ge c_{1}\), \(E\left[ {\pi_{M}^{w} \left( {{\text{w}}^{**} } \right)} \right] \ge E\left[ {\pi_{M}^{c} \left( {\omega^{**} } \right)} \right]\); when \(0 < c < c_{1}\), \(E\left[ {\pi_{M}^{w} \left( {{\text{w}}^{**} } \right)} \right] < E\left[ {\pi_{M}^{c} \left( {\omega^{**} } \right)} \right]\).
Comparing the optimal expected profits of the retailer:
Taking the first and second derivative of \(E\left[ {\pi_{R}^{w} \left( {Q_{w}^{**} ,s_{w}^{**} } \right)} \right] - E\left[ {\pi_{R}^{c} \left( {Q_{c}^{**} ,s_{c}^{**} } \right)} \right]\) with \({{c}}\):
Let \(c_{2} = \frac{{B_{2} - \sqrt {B_{2}^{2} - B_{2} B_{3} } }}{{2B_{1} }}\), \(c_{3} = \frac{{B_{2} + \sqrt {B_{2}^{2} - B_{2} B_{3} } }}{{2B_{1} }}\). We can obtain: when \(c < c_{2}\) or \(c > c_{3}\), \(E\left[ {\pi_{R}^{w} \left( {Q_{w}^{**} ,s_{w}^{**} } \right)} \right] > E\left[ {\pi_{R}^{c} \left( {Q_{c}^{**} ,s_{c}^{**} } \right)} \right]\); when \(c_{2} \le c \le c_{3}\), \(E\left[ {\pi_{R}^{w} \left( {Q_{w}^{**} ,s_{w}^{**} } \right)} \right] \le E\left[ {\pi_{R}^{c} \left( {Q_{c}^{**} ,s_{c}^{**} } \right)} \right]\).
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Wei, J., Ying, Z. & Wen, C. Distribution channel strategies of suboptimal food supply chain under demand uncertainty. Oper Res Int J 25, 35 (2025). https://doi.org/10.1007/s12351-025-00914-4
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s12351-025-00914-4