Skip to main content
Log in

Multidisciplinary Design Approach for Implementation of Interactive Services

Communication Initiation and User Identification for Healthcare Service Robots

  • Published:
International Journal of Social Robotics Aims and scope Submit manuscript

Abstract

In the design of service robots, a key research focus has been on Human Robot Interaction (HRI) required in service applications. HRI is one of the critical factors that determines the acceptability of a service robot. The user acceptance of a service robot and its applications is highly related to HRI, as HRI affects the user perception and user experience related to the robot. In this paper, a new design approach is proposed for designing and implementing HRI for service robot applications designed for real scenarios in the real-world environment. The objective of this design approach is to facilitate inter-disciplinary collaborations, which are essential for HRI research and for developing successful products. The proposed design approach was used in the design of the healthcare service robot “Cafero” developed at the University of Auckland in collaboration with the Electronic and Telecommunication Research Institute (ETRI) and Yujin Robot Company Ltd. of Korea. Vital signs measurement, medication management, entertainment and falls detection were implemented as service applications of Cafero.

In the design process, UML and UMLi modelling diagrams were used to model the robot’s multi-modal and interactive behaviour. Interaction design patterns were defined to represent recurring interactions or social cues in HRI using UMLi notations. The proposed design approach emphasises an iterative process to allow discovery of additional HRI requirements in the early design stage and to implement through Component-Based Software Engineering (CBSE).

The design of communication initiation and user identification by Cafero is presented as a case study, in order to evaluate the proposed design approach. In this case study, enabling a service robot to act proactively to the presence of a potential user and identifying the user prior to providing healthcare services is presented. For the implementation, Open-RTM component-oriented framework was used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander C, Ishikawa S, Silverstein M, Jacobson M, Fiksdahl-King I, Angel S (1977) A pattern language. LISP50, vol 132. Oxford University Press, Oxford. doi:10.1145/1529966.1529967

    Google Scholar 

  2. Ando N, Suehiro T, Kitagaki K, Kotoku T, Yoon W (2005) RT-middleware: distributed component middleware for RT (robot technology). In: Intelligent robots and systems (IROS 2005), IEEE/RSJ international conference on, pp 3933–3938. IEEE, New York

    Chapter  Google Scholar 

  3. Ando N, Suehiro T, Kotoku T (2008) In: Carpin S, Noda I, Pagello E, Reggiani M, Stryk O (eds) Simulation, modeling, and programming for autonomous robots. Lecture notes in computer science, vol 5325. Springer, Berlin, pp 87–98

    Chapter  Google Scholar 

  4. Armato A, Salvini P, Laschi C (2008) Adapting UMLi to design interfaces for human-robot interaction (Poster). In: ACM/IEEE international conference on human-robot interaction, Amsterdam

    Google Scholar 

  5. Breazeal C (2004) Social interactions in HRI: the robot view. IEEE Trans Syst Man Cybern, Part C, Appl Rev 34(2):181–186. doi:10.1109/TSMCC.2004.826268

    Article  Google Scholar 

  6. Breazeal C, Takanishi A, Kobayashi T (2008) In: Social robots that interact with people, pp 1349–1369. Springer, Berlin. doi:10.1007/978-3-540-30301-5_59

    Google Scholar 

  7. Broadbent E, Kuo IH, Lee YI, Rabindran J, Kerse N, Stafford R, MacDonald BA (2010) Attitudes and reactions to a healthcare robot. Telemed J E-Health: The Official Journal of the American Telemedicine Association 16(5), 608–613. doi:10.1089/tmj.2009.0171

    Article  Google Scholar 

  8. Broadbent E, Lee YI, Stafford RQ, Kuo IH, MacDonald BA (2011) Mental schemes of robots as more human-like are associated with higher blood pressure and negative emotions in a human-robot interaction. Int J Soc Robot 3(3):291–297. doi:10.1007/s12369-011-0096-9

    Google Scholar 

  9. Bruce A, Nourbakhsh I, Simmons R (2002) The role of expressiveness and attention in human-robot interaction. IEEE, New York. doi:10.1109/ROBOT.2002.1014396

    Google Scholar 

  10. Burke J, Murphy R, Rogers E, Lumelsky V, Scholtz J (2004) Final report for the DARPA/NSF interdisciplinary study on human-robot interaction. IEEE Trans Syst Man Cybern, Part C, Appl Rev 34(2):103–112

    Article  Google Scholar 

  11. Ceccarelli M (2011) Problems and issues for service robots in new applications. Int J Soc Robot 3(3):299–312. doi:10.1007/s12369-011-0097-8

    MathSciNet  Google Scholar 

  12. Chobanian A, Bakris G, Black H, Cushman W, Green L, Izzo Jr J, Jones D, Materson B, Oparil S, Wright Jr J, et al. (2003) Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension 42(6):1206

    Article  Google Scholar 

  13. Dario P, Guglielmelli E, Laschi C, Teti G (1999) MOVAID: a personal robot in everyday life of disabled and elderly people. Technol Disabil 10(2):77–93

    Google Scholar 

  14. Duffy B (2003) Anthropomorphism and the social robot. Robot Auton Syst 42(3–4):177–190. doi:10.1016/S0921-8890(02)00374-3

    Article  MATH  Google Scholar 

  15. Fowler M (2003) UML distilled: a brief guide to the standard object modeling language. Addison-Wesley/Longman, Boston

    Google Scholar 

  16. Gamma E, Helm R, Johnson R, Vlissides J (1995) Design patterns: elements of reusable object-oriented software. Addison-Wesley Professional Computing Series, vol 206. Addison-Wesley, Reading

    Google Scholar 

  17. Glas D, Satake S, Kanda T, Hagita N (2011) An interaction design framework for social robots. In: Proceedings of robotics: science and systems, Los Angeles, CA, USA

    Google Scholar 

  18. Griffiths T, Barclay P, Paton NW, McKirdy J, Kennedy J, Gray P, Cooper R, Goble C, Da Silva P (2010) Teallach: a model-based user interface development environment for object databases. Proc. User Interfaces Data Intensive Syst 14(1):86–96

    Google Scholar 

  19. Guiochet J, Tondu B, Baron C (2003) Integration of UML in human factors analysis for safety of a medical robot for tele-echography. In: Intelligent robots and systems (IROS 2003), Proceedings, 2003 IEEE/RSJ international conference on, vol 4, pp 3212–3217. IEEE, New York

    Google Scholar 

  20. Hashimoto H, Sasaki T, Jeni LA (2010) Current status of intelligent space. J Meas Sci Instrum doi:10.3969/j.issn.1674-8042.2010.01.18

    Google Scholar 

  21. Iborra A, Caceres D, Ortiz F, Franco J, Palma P, Alvarez B (2009) Design of service robots. IEEE Robot Autom Mag 16(1):24–33. doi:10.1109/MRA.2008.931635

    Article  Google Scholar 

  22. Jayawardena C, Kuo I, Unger U, Igic A, Wong R, Watson C, Stafford R, Broadbent E, Tiwari P, Warren J, et al. (2010) Deployment of a service robot to help older people. In: Intelligent robots and systems (IROS), 2010 IEEE/RSJ international conference on, pp 5990–5995. IEEE, New York

    Chapter  Google Scholar 

  23. Kahn PH, Freier NG, Kanda T, Ishiguro H, Ruckert JH, Severson RL, Kane SK (2008) Design patterns for sociality in human-robot interaction. ACM Press, New York. doi:10.1145/1349822.1349836

    Google Scholar 

  24. Kim D, Lee J, Soh J, Chung Y (2003) Real-time face verification using multiple feature combination and a support vector machine supervisor. In: International conference on multimedia and expo, vol 2, pp 145–148

    Google Scholar 

  25. Kim M, Kim S, Park S, Choi M, Gomaa H (2009) Service robot for the elderly. IEEE Robot Autom Mag 16(1):34–45

    Article  Google Scholar 

  26. Kovacevic S (2004) UML and user interface modeling. The Unified Modeling Language. UML’98: Beyond the Notation

  27. Kuo IH, Jayawardena C, Tiwari P, Broadbent E, MacDonald BA (2010) User identification for healthcare service robots: multidisciplinary design for implementation of interactive services. In: Second international conference on social robotics, pp 20–29

    Google Scholar 

  28. Kuo IH, Rabindran J, Broadbent E, Lee Y, Kerse N, Stafford M, Macdonald BA (2009) Age and gender factors in user acceptance of healthcare robots. In: Proceedings of 18th IEEE international symposium on robot and human interactive communication, pp 214–219. Toyama, Japan

    Chapter  Google Scholar 

  29. Markopoulos P, Marijnissen P (2000) UML as a representation for interaction designs. In: Proceedings of OZCHI 2000, pp 240–249

    Google Scholar 

  30. Marquie JC, Jourdan-Boddaert L, Huet N (2002) Do older adults underestimate their actual computer knowledge? Behav Inf Technol, 21(4):273–280. doi:10.1080/0144929021000020998

    Article  Google Scholar 

  31. Mattern F, Naghshineh M, LaMarca A, Brunette W, Koizumi D, Lease M, Sigurdsson S, Sikorski K, Fox D, Borriello G (2002) Pervasive computing. Lecture notes in computer science, vol 2414. Springer, Berlin. doi:10.1007/3-540-45866-2

    Book  MATH  Google Scholar 

  32. NZIER (2004) Ageing New Zealand and health and disability service: demand projections and workforce implications, 2001–2021

  33. Ogawa N, Retherford RD (1993) Care of the elderly in Japan: Changing norms and expectations. J Marriage Fam 55(3):585–597. doi:10.2307/353340

    Article  Google Scholar 

  34. Paterno F (2001) Towards a UML for interactive systems. In: Little R, Nigay L (eds) Engineering for human-computer interaction, vol 2254. Springer, Berlin, pp 7–18

    Chapter  Google Scholar 

  35. Paulos E, Canny J (1998) Designing personal tele-embodiment. In: Proceedings 1998 IEEE international conference on robotics and automation cat No 98CH36146, vol 4, pp 3173–3178. IEEE, New York. doi:10.1109/ROBOT.1998.680913

    Chapter  Google Scholar 

  36. Pinheiro P, Paton NW (2000) UMLi: The unified modeling language for interactive applications. In: 3rd International conference on the unified modeling language, pp 117–132. Springer, York

    Google Scholar 

  37. Pitsch K, Kuzuoka H, Suzuki Y, Süssenbach L, Luff P, Heath C (2009) “The first five seconds”: Contingent stepwise entry into an interaction as a means to secure sustained engagement in HRI. In: Proceedings of the internatinal symposium on robot human interactive communication RoMan 2009, pp 985–991

    Chapter  Google Scholar 

  38. Puerta AR (1997) A model-based interface development environment. IEEE Softw 14(4):40–47. doi:10.1109/52.595902

    Article  Google Scholar 

  39. Radford M (1998) Approach or avoidance? The role of nonverbal communication in the academic library user’s decision to initiate a reference encounter. Libr Trends 46(4):699–717

    MathSciNet  Google Scholar 

  40. Sasaki T, Hashimoto H (2009) Design and implementation of distributed sensor network for intelligent space based on robot technology components. In: Human system interactions, 2009 (HSI’09) 2nd conference on, pp 400–405. IEEE, New York

    Chapter  Google Scholar 

  41. Satake S, Kanda T, Glas DF, Imai M, Ishiguro H, Hagita N (2009) How to approach humans? Strategies for social robots to initiate interaction. In: HRI 09 Proceedings of the 4th ACM IEEE international conference on human robot interaction, pp. 109–116. ACM, New York. doi:10.1145/1514095.1514117

    Chapter  Google Scholar 

  42. Shakhimardanov A, Paulus J, Hochgeschwender N, Reckhaus M, Kraetzschmar GK (2010) Best practice assessment of software technologies for robotics. Tech rep, Bonn-Rhein-Sieg University (BRSU)

  43. Spool J (2006) The elements of a design pattern. Academic Press, New York

  44. Stergiou GS, Bliziotis IA (2011) Home blood pressure monitoring in the diagnosis and treatment of hypertension: a systematic review. Am J Hypertens 24(2), 123–134. doi:10.1038/ajh.2010.194

    Article  Google Scholar 

  45. Szekely P (1996) Retrospective and challenges for model-based interface development. In: Bodart F, Vanderdonckt J (eds.) Design specification and verification of interactive systems, vol 96, pp 1–27. Information Sciences Institute, University of Southern California, Citeseer

    Google Scholar 

  46. Tamagawa R, Watson CI, Kuo IH, MacDonald BA, Broadbent E (2011) The effects of synthesized voice accents on user perceptions of robots. Int J Soc Robot 3(3):253–262. doi:10.1007/s12369-011-0100-4

    Google Scholar 

  47. Tapus A, Chetouani M (2010) ROBADOM: the impact of a domestic robot on the psychological and cognitive state of the elderly with mild cognitive impairment. In: Proceedings of the second international symposium on quality of life technology intelligent systems for better living, Las Vegas, CA, USA

    Google Scholar 

  48. Truong K, Hayes G, Abowd G (2006) Storyboarding: an empirical determination of best practices and effective guidelines. In: Proceedings of the 6th conference on designing interactive systems, pp 12–21. ACM, New York

    Chapter  Google Scholar 

  49. Wrede S, Lütkebohle I (2008) Integration expertise in HRI research: a first survey. In: ICRA’08 workshop on software engineering for robotics III. Applied Informatics Group

    Google Scholar 

  50. Xavier J, Pacheco M, Castro D, Ruano A, Nunes U (2005) Fast line, arc/circle and leg detection from laser scan data in a player driver. In: IEEE international conference on robotics and automation, vol 4, pp 3930. Citeseer

    Google Scholar 

  51. Yun WH, Kim D, Song BY, Yoon HS (2008) Face recognition using HOG features. In: The 5th international conference on ubiquitous robots and ambient intelligence, Urai

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I-Han Kuo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuo, IH., Jayawardena, C., Broadbent, E. et al. Multidisciplinary Design Approach for Implementation of Interactive Services. Int J of Soc Robotics 3, 443–456 (2011). https://doi.org/10.1007/s12369-011-0115-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12369-011-0115-x

Keywords

Navigation