Skip to main content
Log in

Stiffness and Impedance Control Using Lyapunov Theory for Robot-Aided Rehabilitation

  • Published:
International Journal of Social Robotics Aims and scope Submit manuscript

Abstract

In this paper, stiffness and impedance control concepts are used to solve position and force control for robot-aided rehabilitation. New asymptotic stability conditions are proposed using a suitable Lyapunov approach and based on the relationship between the dynamics of the robot and its energy. The efficiency of the proposed approach is tested on a planar 3 DOF robot-aided rehabilitation constrained to a circular trajectory. The robotic device is configured to be safe and stable in compliant motion in contact with the human arm. It is also designed to be adapted easily to different subjects for performing different tasks. Force and control parameters are tuned using a non linear optimization strategy for which the stability conditions are considered as inequality constraints. Simulation results show that the robot could guide the upper limb of subjects in circular movements under predefined model of the external force and prove the stability and the performances of the compliant motion control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Masiero S, Celia A, Rosati G, Armani M (2007) Robotic-assisted rehabilitation of the upper limb after acute stroke. Arch Phys Med Rehabil 88(2):142–149. doi:10.1016/j.apmr.2006.10.032

    Article  Google Scholar 

  2. Kwakkel G, Kollen BJ, Krebs HI (2008) Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil Neural Repair 22(2):111–121. doi:10.1177/1545968307305457

    Google Scholar 

  3. Kiguchi K, Kariya S, Watanabe K, Izumi K, Fukuda T (2001) An exoskeletal robot for human elbow motion support—sensor fusion, adaptation, and control. IEEE Trans Syst Man Cybern, Part B, Cybern 31(3):353–361. doi:10.1109/3477.931520

    Article  Google Scholar 

  4. Papageorgiou X, McIntyre J, Kyriakopoulos KJ (2006) Towards recognition of control variables for an exoskeleton. In: Proceeding of the IEEE international symposium of intelligent control. doi:10.1109/CACSD-CCA-ISIC.2006.4777125

    Google Scholar 

  5. Stephen JB, Ian EB, Stephen HS (2007) A planar 3DOF robotic exoskeleton for rehabilitation and assessment. In: Proceeding of the 29th annual international conference of the IEEE EMBS. doi:10.1109/IEMBS.2007.4353216

    Google Scholar 

  6. Stephen JB, Ian EB, Stephen HS (2009) Performance evaluation of a planar 3DOF robotic exoskeleton for motor assessment. J Med Devices 3:1–12. doi:10.1115/1.3131727

    Google Scholar 

  7. Reinkensmeyer DJ, Aoyagi D, Emken JL, Galvez JA, Ichinose W, Kerdanyan G, Maneekobkunwong S, Minakata K, Nessler JA, Weber R, Roy RR, De Leon R, Bobrow JE, Harkema SJ, Edgerton VR (2006) Tools for understanding and optimizing robotic gait training. J Rehabil Res Dev 43:657–670. doi:10.1682/JRRD.2005.04.0073

    Article  Google Scholar 

  8. Jan FV, Rik K, Edsko EGH, Ralf E, Edwin HFVA, Herman VK (2007) Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng 15(3):379–386. doi:10.1109/TNSRE.2007.903919

    Article  Google Scholar 

  9. Prange GB, Jannink MJA, Groothuis-Oudshoorn CGM, Hermens HJ, Ijzerman MJ (2006) Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. J Rehabil Res Dev 43(2):171–183. doi:10.1682/JRRD.2005.04.0076

    Article  Google Scholar 

  10. Krebs HI, Palazzolo JJ, Dipietro L, Ferraro M, Krol J, Rannekleiv K et al (2003) Rehabilitation robotics: Performance-based progressive robot-assisted therapy. Auton Robots 15(1):7–20. doi:10.1023/A:1024494031121

    Article  Google Scholar 

  11. Linde RQVD, Lammertse P (2003) HapticMaster—a generic force controlled robot for human interaction. Ind Robot 30:515–524. doi:10.1108/01439910310506783

    Article  Google Scholar 

  12. Soichi N, Ryojun I, Takahiro W, Kazuki M, Hideki S, Hitoshi H (2008) A study on impedance control using passive elements for human-assist system. In: Proceeding of the SICE annual conference. doi:10.1109/SICE.2008.46549722008

    Google Scholar 

  13. Krebs HI, Volpe BT, Aisen ML, Hogan N (2000) Increasing productivity and quality of care: robot-aided neurorehabilitation. J Rehabil Res Dev 37(6):639–652. http://bvs.insp.mx/articulos/2/8/03042001.pdf

    Google Scholar 

  14. Van der Kooij H, Veneman J, Ekkelenkamp R (2006) Compliant actuation of exoskeletons. In: Lazinica A (ed) Mobile robotics-towards new applications, Mammendorf. ISBN 978-3-86611-314-5

    Google Scholar 

  15. Vukobratovic MK, Tuneski A (1996) Adaptive control of single rigid robotic manipulators interacting with dynamic environment—an overview. J Intell Robot Syst 17:1–30. doi:10.1007/BF00435714

    Article  Google Scholar 

  16. Raibert M, Craig JJ (1981) Hybrid position/force control of manipulators. J Dyn Syst Meas Control 120:126–133. doi:10.1115/1.3139652

    Article  Google Scholar 

  17. Salisbury JK (1980) Active stiffness control of a manipulator in Cartesian coordinates. In: Proceeding of the IEEE international conference on decision and control including the symposium on adaptive processes. doi:10.1109/CDC.1980.272026

    Google Scholar 

  18. Hogan N (1984) Impedance control of industrial robots. Robot Comput-Integr Manuf 1:97–113. doi:10.1016/0736-5845(84)90084-X

    Article  MathSciNet  Google Scholar 

  19. Hogan N (1985) Impedance control: an approach to manipulators: Part 1, 2, 3. J Dyn Syst Meas Control 107:1–24. doi:10.1115/1.3140702

    Article  MATH  Google Scholar 

  20. Chiaverini S, Sciavicco L (1993) The parallel approach to force/position control of robotic manipulators. IEEE Trans Robot Autom. doi:10.1109/70.246048

    MATH  Google Scholar 

  21. Kamnik R, Matko D, Bajd T (1998) Application of model reference adaptive control to industrial robot impedance control. J Intell Robot Syst 22:153–163. doi:10.1023/A:1007932701318

    Article  MATH  Google Scholar 

  22. Sungchul K, Kiyoshi K, Kazuhito Y, Tetsuo K, Byungchan K, Shinsuk P (2010) Control of impulsive contact force between mobile manipulator and environment using effective mass and damping controls. Int J Precis Eng Manuf 11:697–704. doi:10.1007/s12541-010-0082-4

    Article  Google Scholar 

  23. Vukobratovic MK, Rodić AG, Ekalo Y (1997) Impedance control as a particular case of the unified approach to the control of robots interacting with a dynamic known environment. J Intell Robot Syst 18:191–204. doi:10.1023/A:1007915307723

    Article  Google Scholar 

  24. Chiaverini S, Siciliano B, Villani L (1999) A survey of robot interaction control schemes with experimental comparison. IEEE/ASME Trans Mechatron 4(3):273–285. doi:10.1109/3516.789685

    Article  Google Scholar 

  25. Karunakar SB, Goldenberg AA (1988) Contact stability in model-based force control systems of robot manipulators. In: Proceeding of the IEEE international symposium on intelligent control. doi:10.1109/ISIC.1988.65467

    Google Scholar 

  26. Lawrence DA (1988) Impedance control stability properties in common implementation. In: Proceeding of the IEEE international conference on robotics and automation. doi:10.1109/ROBOT.1988.12222

    Google Scholar 

  27. Surdilovic D (1996) Contact stability issues in position based impedance control: theory and experiments. In: Proceeding of the IEEE international conference on robotics and automation. doi:10.1109/ROBOT.1996.506953

    Google Scholar 

  28. Kazerooni H, Waibel BJ, Kim S (1990) On the stability of robot compliant motion control: theory and experiments. J Dyn Syst Meas Control 112:417–426. doi:10.1115/1.2896159

    Article  MATH  Google Scholar 

  29. Hogan N (1988) On the stability of manipulator performing contact tasks. IEEE J Robot Autom 4:677–686. doi:10.1109/56.9305

    Article  Google Scholar 

  30. Tsumugiwa T, Yokogawa R, Yoshida K (2004) Stability analysis for impedance control of robot for human-robot cooperative task system. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems. doi:10.1109/IROS.2004.1390020

    Google Scholar 

  31. Duchaine V, Gosselin CM (2008) Investigation of human-robot interaction stability using Lyapunov theory. In: Proceeding of the IEEE/RSJ international conference on robotics and automation. doi:10.1109/ROBOT.2008.4543531

    Google Scholar 

  32. Seul Jung Hsia TC (1999) Stability and convergence analysis of robust adaptive force tracking impedance control of robot manipulators. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems. doi:10.1109/IROS.1999.812751

    Google Scholar 

  33. Buerger SP, Hogan N (2007) Complementary stability and loop shaping for improved Human–Robot interaction. IEEE Trans Robot 23:232–244. doi:10.1109/TRO.2007.892229

    Article  Google Scholar 

  34. Zeng G, Hemami A (1997) An overview of robot force control. Robotica 15:473–482. doi:10.1017/S026357479700057X

    Article  Google Scholar 

  35. Yabuta T, Chona AJ, Beni G (1988) On the asymptotic stability of the hybrid position/force control scheme for robot manipulators. In: Proceedings of the IEEE international conference on robotics and automation. doi:10.1109/ROBOT.1988.12071

    Google Scholar 

  36. Slotine JJE, Li W (1991) Applied nonlinear control. Prentice Hall, New York

    MATH  Google Scholar 

  37. Mehdi H, Boubaker O (2010) Position/force control for constrained robotic systems: a Lyapunov approach. In: Proceedings of the IEEE international symposium on robotics and intelligent sensors. ISBN:978-4-9905048-0-9

    Google Scholar 

  38. Mehdi H, Boubaker O (2010) Rehabilitation of a human arm supported by a robotic manipulator: a position/force cooperative control. J Comput Sci 6(8):912–919. doi:10.3844/jcssp.2010.912.919

    Article  Google Scholar 

  39. Winter DA (2009) Biomechanics and motor control of human movement. Wiley, New York

    Book  Google Scholar 

  40. Aloulou A, Boubaker O (2010) Modeling and controlling a humanoid robot in the three dimensional space. In: Proceedings of the IEEE international symposium on robotics and intelligent sensors. ISBN:978-4-9905048-0-9

    Google Scholar 

  41. Gill PE, Murray W, Wright MH (1981) Practical optimization. Academic Press, San Diego

    MATH  Google Scholar 

  42. Powell MJD (1978) The convergence of variable metric methods for nonlinearly constrained optimization calculations. Academic Press, San Diego

    Google Scholar 

  43. Krebs HI, Hogan N, Aisen ML, Volpe BT (1998) Robot-aided neurorehabilitation. IEEE Trans Rehabil Eng 6(1):75–87. doi:10.1109/86.662623

    Article  Google Scholar 

  44. Burgar CG, Lum PS, Shor PC, Machiel Van der Loos HF (2000) Development of robots for rehabilitation therapy: the Palo Alto VA/Stanford experience. J Rehabil Res Dev 37(6):663–673

    Google Scholar 

  45. Ju MS, Lin CCK, Lin DH, Hwang IS, Chen SM (2005) A rehabilitation robot with force position hybrid fuzzy controller: hybrid fuzzy control of rehabilitation robot. IEEE Trans Neural Syst Rehabil Eng 13(3):349–358. doi:10.1109/TNSRE.2005.847354

    Article  Google Scholar 

  46. Jingguo W, Yangmin L (2010) A cooperated-robot arm used for rehabilitation treatment with hybrid impedance control method. In: Proceedings of the third international conference on intelligent robotics and applications. doi:10.1007/978-3-642-16587-0_42

    Google Scholar 

  47. Sugar TG, He J, Koeneman EJ, Koeneman JB, Herman R, Huang H et al (2007) Design and control of RUPERT: a device for robotic upper extremity repetitive therapy. IEEE Trans Neural Syst Rehabil Eng 15(3):336–346. doi:10.1109/TNSRE.2007.903903

    Article  Google Scholar 

  48. Marchal-Crespo L, Reinkensmeyer DJ (2009) Review of control strategies for robotic movement training after neurologic injury. J NeuroEng Rehabil 6(1):6–20. doi:10.1186/1743-0003-6-20

    Article  Google Scholar 

  49. Akdoǧan E, Adli MA (2011) The design and control of a therapeutic exercise robot for lower limb rehabilitation: physiotherabot. Mechatronics 21(3):509–522. doi:10.1016/j.mechatronics.2011.01.005

    Article  Google Scholar 

  50. Xu G, Song A, Li H (2011) Control system design for an upper-limb rehabilitation robot. Adv Robot 25(1–2):229–251. doi:10.1163/016918610X538561

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olfa Boubaker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehdi, H., Boubaker, O. Stiffness and Impedance Control Using Lyapunov Theory for Robot-Aided Rehabilitation. Int J of Soc Robotics 4 (Suppl 1), 107–119 (2012). https://doi.org/10.1007/s12369-011-0128-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12369-011-0128-5

Keywords

Navigation