Skip to main content

Advertisement

Log in

Socially Assistive Robots: A Comprehensive Approach to Extending Independent Living

  • Published:
International Journal of Social Robotics Aims and scope Submit manuscript

Abstract

Demographic developments have challenged our research on how to assist elderly people by using robots. The KSERA (Knowledgeable SErvice Robots for Aging) project integrates smart home technology and a socially-assistive robot to extend independent living for elderly people, in particular those with COPD (Chronic Obstructive Pulmonary Disease). The social robot is the most visible component of the system playing the role of communication interface between the elderly, the smart home, and the external world. The robot’s behavior is determined in part by sensor information gathered through the smart home. To ensure user acceptance, we used user-centered design to implement the robot’s behavior. This paper describes the KSERA system, how it was developed based on user needs, treatment plans, and lab studies, and how we validated the approach through user studies and field trials. The key enabling technologies for successful socially-assistive robots include person- and self-localization abilities, person-aware navigation, speech recognition and generation, robot gestures, emulated emotions, eye contact and joint attention, and audio-video communication with family members and care givers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Akkaya K, Younis M (2005) A survey on routing protocols for wireless sensor networks. Ad Hoc Netw 3(3):325–349. doi:10.1016/j.adhoc.2003.09.010

    Article  Google Scholar 

  2. Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E (2002) A survey on sensor networks. IEEE Commun Mag 40(8):102–114. doi:10.1109/MCOM.2002.1024422

    Article  Google Scholar 

  3. Aldebaran Robotics (2012) Nao key features. www.aldebaran-robotics.com/en/Discover-NAO/Key-Features/hardware-platform.html. Accessed 17 July 2012

  4. Amigo (2012) Amigo: ambient intelligence for the networked home environment. www.hitech-projects.com/euprojects/amigo. Accessed 17 August 2012

  5. Andric M, Small SL (2012) Gesture’s neural language. Front. Psychol. 3

  6. Banks MR, Willoughby LM, Banks WA (2008) Animal-assisted therapy and loneliness in nursing homes: use of robotic versus living dogs. J Am Med Dir Assoc 9(3):173–177. doi:10.1016/j.jamda.2007.11.007

    Article  Google Scholar 

  7. Bartneck C, Kulić D, Croft E, Zoghbi S (2009) Measurement instruments for the anthropomorphism, animacy, likeability, perceived intelligence, and perceived safety of robots. Int J Soc Robot 1(1):71–81

    Article  Google Scholar 

  8. Bemelmans R, Gelderblom GJ, Jonker P, de Witte L (2012) Socially assistive robots in elderly care: a systematic review into effects and effectiveness. J Am Med Dir Assoc 13(2):114–120. doi:10.1016/j.jamda.2010.10.002

    Article  Google Scholar 

  9. Breazeal C (2007) Sociable robots. J Robotics Soc Jpn 24(5):591–593

    Article  Google Scholar 

  10. Bremner J, Frost A, Haub C, Mather M, Ringheim K, Zuehlke E (2010) World population highlights: key findings from PRB’s 2010 world population data sheet. Population Reference Bureau

  11. Broekens J, Heerink M, Rosendal H (2009) Assistive social robots in elderly care: a review. Gerontechnology 8(2):94–103

    Article  Google Scholar 

  12. Cesta A, Coradeschi S, Cortellessa G, Gonzalez J, Tiberio L, Von Rump S (2010) Enabling social interaction through embodiment in ExCITE. In: ForItAAL: second Italian forum on ambient assisted living, Trento, October, pp 5–7

    Google Scholar 

  13. Cesta A, Cortellessa G, Giuliani V, Pecora F, Rasconi R, Scopelliti M, Tiberio L (2007) Proactive assistive technology: an empirical study. In: Human-computer interaction (INTERACT 2007). Springer, Berlin, pp 255–268. doi:10.1007/978-3-540-74796-325

    Chapter  Google Scholar 

  14. Clodic A, Alami R, Montreuil V, Li S, Wrede B, Swadzba A (2007) A study of interaction between dialog and decision for human-robot collaborative task achievement. In: The 16th IEEE international symposium on robot and human interactive communication (RO-MAN 2007). IEEE Press, New York, pp 913–918. doi:10.1109/ROMAN.2007.4415214

    Chapter  Google Scholar 

  15. Cuijpers RH, Bruna MT, Ham JR, Torta E (2011) Attitude towards robots depends on interaction but not on anticipatory behaviour. In: Social robotics. Springer, Berlin, pp 163–172. doi:10.1007/978-3-642-25504-5_17

    Chapter  Google Scholar 

  16. DOMEO (Domestic Robot for Elderly Assistance) (2012). www.aal-domeo.eu. Accessed 17 August 2012

  17. Edelmayer G, Ehrenfels G, Beck C, Mayer P, Panek P (2012) Prototyping a LED projector module carried by a humanoid nao robot to assist human robot communication by an additional visual output channel. In: Proc IASTED, pp 809–816

    Google Scholar 

  18. Ekman P, Friesen WV (1969) The repertoire of nonverbal behavior: categories, origins, usage, and coding. Semiotica 1(1):49–98

    Google Scholar 

  19. Ekman P, Friesen WV (1977) Manual for the facial action coding system

  20. Feil-Seifer D, Mataric MJ (2005) Defining socially assistive robotics. In: 9th international conference on rehabilitation robotics (ICORR 2005). IEEE Press, New York, pp 465–468. doi:10.1109/ICORR.2005.1501143

    Google Scholar 

  21. Friedman B, Kahn PH Jr, Hagman J (2003) Hardware companions? What online AIBO discussion forums reveal about the human-robotic relationship. In: Proceedings of the SIGCHI conference on human factors in computing systems. ACM, New York, pp 273–280. doi:10.1145/642611.642660

    Google Scholar 

  22. Ham J, Bokhorst R, Cuijpers RH, van der Pol D, Cabibihan JJ (2011) Making robots persuasive: the influence of combining persuasive strategies (gazing and gestures) by a storytelling robot on its persuasive power. In: Social robotics. Springer, Berlin, pp 71–83

    Chapter  Google Scholar 

  23. Hüttenrauch H, Eklundh KS, Green A, Topp EA (2006) Investigating spatial relationships in human-robot interaction. In: IEEE/RSJ international conference on intelligent robots and systems. IEEE Press, New York, pp 5052–5059. doi:10.1109/IROS.2006.282535

    Google Scholar 

  24. Huijnen C, Badii A, van den Heuvel H, Caleb-Solly P, Thiemert D (2011) Maybe it becomes a buddy, but do not call it a robot—seamless cooperation between companion robotics and smart homes. In: Ambient intelligence. Springer, Berlin, pp 324–329. doi:10.1007/978-3-642-25167-244(10.1007/978-3-642-25167-244)

    Chapter  Google Scholar 

  25. International Organization for Standardization (1999) ISO 13407: human-centred design processes for interactive systems

  26. International Organization for Standardization (1998). ISO 9241-11: ergonomic requirements for office work with visual display terminals (VDTs). Part 11. Guidance on usability

  27. Johnson DO, Cuijpers RH, van der Pol D (2013) Imitating human emotions with artificial facial expressions. Int J Soc Robot. doi:10.1007/s12369-013-0211-1

    Google Scholar 

  28. Kendon A (1967) Some functions of gaze direction in social interaction. Acta Psychol 26:22–63

    Article  Google Scholar 

  29. Knowledgeable SErvice robots for aging project (KSERA) (2012). http://www.ksera-project.eu

  30. Kwon JW, Park YM, Koo SJ, Kim H (2007) Design of air pollution monitoring system using ZigBee networks for ubiquitous-city. In: International conference on convergence information technology, 2007. IEEE Press, New York, pp 1024–1031

    Chapter  Google Scholar 

  31. Lee S, Noh H, Lee J, Lee K, Lee GG, Sagong S, Kim M (2011) On the effectiveness of robot-assisted language learning. ReCALL (Hull) 23(01):25–58. doi:10.1017/S0958344010000273

    Article  Google Scholar 

  32. Li Z, Feng G, Liu F, Dong JQ, Kamoua R, Tang W (2010) Wireless health monitoring system. In: Systems, applications and technology conference (LISAT), Long Island, IEEE Press, New York, pp 1–4

    Google Scholar 

  33. Lohse M, Rohlfing KJ, Wrede B, Sagerer G (2008) Try something else! When users change their discursive behavior in human-robot interaction. In: IEEE international conference on robotics and automation (ICRA 2008). IEEE Press, New York, pp 3481–3486. doi:10.1109/ROBOT.2008.4543743

    Chapter  Google Scholar 

  34. Lowet D, Isken M, Ludden G, van Dijk DJ, Remazeilles A, Cruz Martin E (2010) State of the art in AAL robotic services, deliverable: D5.1, Florence consortium

  35. Lutz C, White GM (1986) The anthropology of emotions. Annu Rev Anthropol 15:405–436

    Article  Google Scholar 

  36. Mayer P, Panek P (2011) An AAL approach to status and activity assessment by use of domain expert knowledge based on sparse nonintrusive sensors. Ambient assisted living—AAL

  37. Mayer P, Panek P (2012) Assessing daily activity of older persons in a real life AAL system. In: Hamza MH (ed) Proceedings of the IASTED international conference telehealth (Telehealth 2012), Innsbruck, Austria, 15–17 February 2012, pp 772–775. ISBN: 978-0-88986-909-7. doi:10.2316/P.2012.765-012

    Google Scholar 

  38. McCullagh PJ Devices and infrastructure to facilitate AAL (2012)

  39. Meyer S (2011) Mein Freund der Roboter. Servicerobotik für ältere Menschen – Eine Antwort auf den demographischen Wandel

    Google Scholar 

  40. MOVEMENT website (2012). www.aat.tuwien.ac.at/fortec/reha.e/projects/movement/index.html. Accessed 15 August 2012

  41. Nani M, Caleb-Solly P, Dogramadzi S, Fear T, van den Heuvel H (2010) MOBISERV: an integrated intelligent home environment for the provision of health. nutrition and mobility services to the elderly

  42. Norman DA (2002) The design of everyday things. Basic Books, New York

    Google Scholar 

  43. Oberzaucher J, Werner F, Lemberger J, Werner K (2013) Formative evaluation of SAR in a real environment. KSERA deliverable: D5.3, January 2013. http://ksera.ieis.tue.nl/publications

  44. Panek P, Edelmayer G, Mayer P, Beck C, Rauhala M (2012) User acceptance of a mobile LED projector on a socially assistive robot. In: Ambient assisted living. Springer, Berlin, pp 77–91

    Chapter  Google Scholar 

  45. Pantelopoulos A, Bourbakis NG (2010) A survey on wearable sensor-based systems for health monitoring and prognosis. systems, man, and cybernetics. Part C. Applications and reviews. IEEE Trans Syst Man Cybern, Part A, Syst Hum 40(1):1–12

    Article  Google Scholar 

  46. Pea RD (1987) User centered system design: new perspectives on human-computer interaction. J Educ Comput Res 3:129–134

    Google Scholar 

  47. Pineau J, Montemerlo M, Pollack M, Roy N, Thrun S (2003) Towards robotic assistants in nursing homes: challenges and results. Robot Auton Syst 42(3):271–281

    Article  MATH  Google Scholar 

  48. Rauhala M (2007) Ethics and assistive technology design for vulnerable users: a case study. Stakes, Helsinki

    Google Scholar 

  49. Rauhala M (2009) Ethical dimensions in the involvement of older end users in technology R&D projects. In: Geyer G, Goebel R, Zimmermann K (eds) Innovative ICT solutions for older persons—a new understanding. Proc of the AAL forum 09 Vienna. OCG, Wien

    Google Scholar 

  50. Rauhala M (2011) When ethical guidance is missing and do-it-yourself is required: the shaping of ethical peer review guidance in the FRR project. In: A friendly rest room: developing toilets of the future for disabled and elderly people. IOS Press, Amsterdam, pp 27, 49

    Google Scholar 

  51. Syrdal DS, Koay KL, Walters ML, Dautenhahn K (2007) A personalized robot companion? The role of individual differences on spatial preferences in HRI scenarios. In: The 16th IEEE international symposium on robot and human interactive communication (RO-MAN 2007). IEEE Press, New York, pp 1143–1148. doi:10.1109/ROMAN.2007.4415252

    Chapter  Google Scholar 

  52. Tapus A, Mataric MJ, Scassellati B (2007) Socially assistive robotics. IEEE Robot Autom Mag 14(1):35. doi: 10.1109/MRA.2007.339605

    Article  Google Scholar 

  53. Torta E, Cuijpers RH, Juola JF (2012) Dynamic neural field as framework for behaviour coordination in mobile robots. In: World automation congress (WAC), 2012. IEEE Press, New York, pp 1–6

    Google Scholar 

  54. Torta E, Cuijpers RH, Juola JF, van der Pol D (2011) Design of robust robotic proxemic behaviour. In: Social robotics. Springer, Berlin, pp 21–30. doi:10.1007/978-3-642-25504-53(10.1007/978-3-642-25504-53)

    Chapter  Google Scholar 

  55. Torta E, Cuijpers RH, Juola J, van der Pol D (2012) Modeling and testing proxemic behavior for humanoid robots. Int J Humanoid Robot 9(4):1250028. doi:10.1142/S0219843612500284

    Article  Google Scholar 

  56. Torta E, Oberzaucher J, Werner F, Cuijpers RH, Juola JF (2012) The attitude toward socially assistive robots in intelligent homes: results from laboratory studies and field trials. Int J Hum-Comput Interact 1(2):76–99

    Google Scholar 

  57. van der Pol D, Cuijpers RH, Juola JF (2010) Head pose estimation for real-time low-resolution video. In: Proceedings of the 28th annual European conference on cognitive ergonomics. ACM, New York, pp 353–354

    Google Scholar 

  58. van der Pol D, Cuijpers RH, Juola JF (2011) Head pose estimation for a domestic robot. In: Proceedings of the 6th international conference on human-robot interaction. ACM, New York, pp 277–278

    Google Scholar 

  59. van Dijk DJ, Isken M, Vester B, Winkler F, Cruz ME, O‘Donnovan K, Remazeilles A, Laval M et al (2010) State of the art of multi-purpose robots and privacy-aware AAL home services, deliverable: D2.1, Florence consortium

  60. Walker W, Lamere P, Kwok P, Raj B, Singh R, Gouvea E, Wolf P, Woelfel J (2004) Sphinx-4: a flexible open source framework for speech recognition. Technical report, SMLI TR-2004-139, Sun Microsystems, Menlo Park, CA, USA

  61. Wada K, Shibata T (2007) Living with seal robots—its sociopsychological and physiological influences on the elderly at a care house. IEEE Trans Robot 23(5):972–980. doi:10.1109/TRO.2007.906261

    Article  Google Scholar 

  62. Weiser M (1991) The computer for the 21st century. Sci Am 265(3):94–104

    Article  Google Scholar 

  63. Werner F, Diermaier J, Schmid S, Panek P (2011) Fall detection with distributed floor-mounted accelerometers: an overview of the development and evaluation of a fall detection system within the project eHome. In: 2011 5th international conference on pervasive computing technologies for healthcare (PervasiveHealth). IEEE Press, New York, pp 354–361

    Google Scholar 

  64. Yan W, Torta E, van der Pol D, Meins N, Weber C, Cuijpers RH, Wermter S (2012) Learning robot vision for assisted living. In: García-Rodríguez J, Cazorla M (eds) Robotic vision: technologies for machine learning and vision applications. IGI Global, Hershey, pp 257–280

    Google Scholar 

  65. Yan W, Weber C, Wermter S (2011) A hybrid probabilistic neural model for person tracking based on a ceiling-mounted camera. J Ambient Intell Smart Environ 3(3):237–252

    Google Scholar 

  66. Yan W, Weber C, Wermter S (2011) Person tracking based on a hybrid neural probabilistic model. In: Artificial neural networks and machine learning (ICANN 2011). Springer, Berlin, pp 365–372

    Chapter  Google Scholar 

  67. Yan W, Weber C, Wermter S (2012) A neural approach for robot navigation based on cognitive map learning. In: The 2012 international joint conference on neural networks (IJCNN). IEEE Press, New York, pp 1–8

    Chapter  Google Scholar 

Download references

Acknowledgements

The KSERA project (http://www.ksera-project.eu) received funding from the European Commission under the 7th Framework Programme (FP7) for Research and Technological Development under grant agreement No. 2010-248085.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David O. Johnson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, D.O., Cuijpers, R.H., Juola, J.F. et al. Socially Assistive Robots: A Comprehensive Approach to Extending Independent Living. Int J of Soc Robotics 6, 195–211 (2014). https://doi.org/10.1007/s12369-013-0217-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12369-013-0217-8

Keywords