Abstract
Dexterous reaching, pointing, and grasping play a critical role in human interactions with tools and the environment, and it also allows individuals to interact with one another effectively in social settings. Developing robotic systems with mental simulation and imitation learning abilities for such tasks seems a promising way to enhance robot performance as well as to enable interactions with humans in a social context. In spite of important advances in artificial intelligence and smart robotics, current robotic systems lack the flexibility and adaptability that humans so naturally exhibit. Here we present and study a neural architecture that captures some critical visuo-spatial transformations that are required for the cognitive processes of mental simulation and imitation. The results show that our neural model can perform accurate, flexible and robust 3D unimanual and bimanual actual/imagined reaching movements while avoiding extreme joint positions and generating kinematics similar to those observed with humans. In addition, using visuo-spatial transformations, the neural model was able to observe/imitate bimanual arm reaching movements independently of the viewpoint, distance and anthropometry between the demonstrator and imitator. Our model is a first step towards developing a more advanced neurally-inspired hierarchical architecture that integrates mental simulation and sensorimotor processing as it learns to imitate dexterous bimanual arm movements.












Similar content being viewed by others
References
Shadmehr R (2005) The computational neurobiology of reaching and pointing: a foundation for motor learning. MIT, Cambridge
Kamper DG, Cruz EG, Siegel MP (2003) Stereotypical fingertip trajectories during grasp. J Neurophysiol 90(6):3702–3710. doi:10.1152/jn.00546.2003
Billard AG, Calinon S, Guenter F (2006) Discriminative and adaptive imitation in uni-manual and bi-manual tasks. Robot Auton Syst 54(5):370–384. doi:10.1016/j.robot.2006.01.007
Cuijpers RH, van Schie HT, Koppen M, Erlhagen W, Bekkering H (2006) Goals and means in action observation: a computational approach. Neural Netw 19(3):311–322. doi:10.1016/j.neunet.2006.02.004
Billard A, Calinon S, Dillmann R, Schaal S (2008) Robot programming by demonstration. In: Siciliano B, Khatib O (eds) Springer handbook of robotics. Springer, Berlin, pp 1371–1394. Retrieved from http://www.springerlink.com/index/10.1007/978-3-540-30301-5_60
Nicolescu M, Mataric M (2009) Task learning through imitation and human–robot interaction. In: Dautenhahn K, Nehaniv C (eds) Models and mechanisms of imitation and social learning in robots, humans and animals. Cambridge University Press, Cambridge, pp 407–424
Argall BD, Chernova S, Veloso M, Browning B (2009) A survey of robot learning from demonstration. Robot Auton Syst 57(5):469–483. doi:10.1016/j.robot.2008.10.024
Umar Suleman M, Awais MM (2011) Learning from demonstration in robots: experimental comparison of neural architectures. Robot Comput Integr Manuf 27(4):794–801. doi:10.1016/j.rcim.2010.10.010
Tani J (2007) On the interactions between top-down anticipation and bottom-up regression. Front Neurorobotics 1. doi:10.3389/neuro.12.002.2007
Mohan V, Morasso P, Metta G, Kasderidis S (2011) Actions and Imagined Actions in Cognitive Robots. In: Cutsuridis V, Hussain A, Taylor JG (eds) Perception–action cycle. Springer, New York, pp 539–572. Retrieved from http://www.springerlink.com/index/10.1007/978-1-4419-1452-1_17
Toussaint M (2006) A sensorimotor map: modulating lateral interactions for anticipation and planning. Neural Comput 18(5):1132–1155. doi:10.1162/089976606776240995
Shanahan M (2006) A cognitive architecture that combines internal simulation with a global workspace. Conscious Cogn 15(2):433–449. doi:10.1016/j.concog.2005.11.005
Morasso P (1981) Spatial control of arm movements. Exp Brain Res 42(2). doi:10.1007/BF00236911
Abend W, Bizzi E, Morasso P (1982) Human arm trajectory formation. Brain 105(Pt 2):331–348
Flash T, Hogan N (1985) The coordination of arm movements: an experimentally confirmed mathematical model. J Neurosci 5(7):1688–1703
Nakano E, Imamizu H, Osu R, Uno Y, Gomi H, Yoshioka T, Kawato M (1999) Quantitative examinations of internal representations for arm trajectory planning: minimum commanded torque change model. J Neurophysiol 81(5):2140–2155
Gordon J, Ghilardi MF, Ghez C (1994) Accuracy of planar reaching movements. I. Independence of direction and extent variability. Exp Brain Res 99(1):97–111
Gentili R, Han CE, Schweighofer N, Papaxanthis C (2010) Motor learning without doing: trial-by-trial improvement in motor performance during mental training. J Neurophysiol 104(2):774–783. doi:10.1152/jn.00257.2010
Wolpert DM, Miall RC (1996) Forward models for physiological motor control. Neural Netw 9(8):1265–1279
Wolpert DM, Doya K, Kawato M (2003) A unifying computational framework for motor control and social interaction. Philos Trans R Soc Lond B 358(1431):593–602. doi:10.1098/rstb.2002.1238
Jeannerod M (2001) Neural simulation of action: a unifying mechanism for motor cognition. Neuro Image 14(1 Pt 2):S103–109. doi:10.1006/nimg.2001.0832
Guillot A, Di Rienzo F, Macintyre T, Moran A, Collet C (2012) Imagining is not doing but involves specific motor commands: a review of experimental data related to motor inhibition. Front Hum Neurosci 6(247):2012. doi:10.3389/fnhum.2012.00247.eCollection
Munzert J, Lorey B, Zentgraf K (2009) Cognitive motor processes: the role of motor imagery in the study of motor representations. Brain Res Rev 60(2):306–326. doi:10.1016/j.brainresrev.2008.12.024
Bakker M, de Lange FP, Stevens JA, Toni I, Bloem BR (2007) Motor imagery of gait: a quantitative approach. Exp Brain Res 179(3):497–504. doi:10.1007/s00221-006-0807-x
Decety J, Jeannerod M (1995) Mentally simulated movements in virtual reality: does Fitts’s law hold in motor imagery? Behav Brain Res 72(1–2):127–134
Papaxanthis C, Pozzo T, Kasprinski R, Berthoz A (2003) Comparison of actual and imagined execution of whole-body movements after a long exposure to microgravity. Neurosci Lett 339(1):41–44
Papaxanthis C, Schieppati M, Gentili R, Pozzo T (2002) Imagined and actual arm movements have similar durations when performed under different conditions of direction and mass. Exp Brain Res 143(4):447–452. doi:10.1007/s00221-002-1012-1
Miall RC (2003) Connecting mirror neurons and forward models. Neuroreport 14(17):2135–2137. doi:10.1097/01.wnr.0000098751.87269.77
Carr L, Iacoboni M, Dubeau M-C, Mazziotta JC, Lenzi GL (2003) Neural mechanisms of empathy in humans: a relay from neural systems for imitation to limbic areas. Proc Natl Acad Sci USA 100(9):5497–5502. doi:10.1073/pnas.0935845100
Iacoboni M, Koski LM, Brass M, Bekkering H, Woods RP, Dubeau MC, Mazziotta JC, Rizzolatti, G. (2001) Reafferent copies of imitated actions in the right superior temporal cortex. Proc Natl Acad Sci USA 98(24):13995–13999. doi:10.1073/pnas.241474598
Gallese V, Fadiga L, Fogassi L, Rizzolatti G (1996) Action recognition in the premotor cortex. Brain 119(Pt 2):593–609
Rizzolatti G, Fogassi L, Gallese V (2001) Neurophysiological mechanisms underlying the understanding and imitation of action. Nat Rev Neurosci 2(9):661–670. doi:10.1038/35090060
Pfeifer R, Lungarella M, Iida F (2012) The challenges ahead for bio-inspired ‘soft’ robotics, vol 55(11). ACM, New York, pp 76–87. doi:10.1145/2366316.236633534
Diftler MA, Mehling JS, Abdallah ME, Radford NA, Bridgwater LB, Sanders AM, Askew RS, Linn DM, Yamokoski JD, Permenter FA, Hargrave BK, Platt R, Savely RT, Ambrose RO (2011) Robonaut 2—the first humanoid robot in space. In: IEEE international conference on robotics and automation, Shanghai, China, 9–13 May 2011, pp 2178–2183
Bullock IM, Ma RR, Dollar AM (2013) A hand-centric classification of human and robot dexterous manipulation. IEEE Trans Haptics 6(2):129–144. doi:10.1109/TOH.2012.53
Ruini F, Apel JS, Morse AF, Cangelosi A, Ellis R, Goslin J, Fische MH (2012) Towards a Biologically-inspired Cognitive Architecture for Short-Term Memory in Humanoid Robots. In: Advances in autonomous robotics. Lecture Notes in Computer Science, vol 7429. Springer, Berlin, pp 453–454. doi:10.1007/978-3-642-32527-4_55
Diamond A, Holland OE (2014) Reaching control of a full-torso, modelled musculoskeletal robot using muscle synergies emergent under reinforcement learning. Bioinspir Biomim 9:016015. doi:10.1088/1748-3182/9/1/016015
Pook PK, Ballard DH (1993) Recognizing teleoperated manipulations. IEEE Comput. Soc. Press, pp 578–585. doi:10.1109/ROBOT.1993.291896
Nehaniv CL, Ab HA, Dautenhahn K (1999) Of hummingbirds and helicopters: an algebraic framework for interdisciplinary studies of imitation and its applications. In: Demiris J, Birk A (eds) Interdisciplinary approaches to robot learning. World Scientific Press, Singapore, pp 136–161
Tso SK, Liu KP (1996) Hidden Markov model for intelligent extraction of robot trajectory command from demonstrated trajectories. IEEE, pp 294–298. doi:10.1109/ICIT.1996.601593
Shon AP, Grochow K, Rao RPN (2005) Robotic imitation for human motion capture using gaussian processes. IEEE, pp 129–134. doi:10.1109/ICHR.2005.1573557
Aleotti J, Caselli S (2005) Trajectory clustering and stochastic approximation for robot programming by demonstration. IEEE, pp 1029–1034. doi:10.1109/IROS.2005.1545365
Jäkel R, Schmidt-Rohr SR, Rühl SW, Kasper A, Xue Z, Dillmann R (2012) Learning of planning models for dexterous manipulation based on human demonstrations. Int J Soc Robot 4(4):437–448. doi:10.1007/s12369-012-0162-y
Mellmann H, Cotugno G (2011) Dynamic motion control: adaptive bimanual grasping for a humanoid robot. Fundam Inf 112:89–101
Lee J, Chang P, Jamisola R (2013) Relative Impedance control for dual-arm robots performing asymmetric bimanual tasks. In: IEEE transactions on industrial electronics 1-1. doi:10.1109/TIE.2013.2266079
Hersch M, Billard AG (2008) Reaching with multi-referential dynamical systems. Auton Robots 25(1–2):71–83. doi:10.1007/s10514-007-9070-7
Mohan V, Morasso P, Metta G, Sandini G (2009) A biomimetic, force-field based computational model for motion planning and bimanual coordination in humanoid robots. Auton Robots 27(3):291–307. doi:10.1007/s10514-009-9127-x
Oztop E, Lin L, Kawato M, Cheng G (2006) Dexterous skills transfer by extending human body schema to a robotic hand. IEEE, pp 82–87. doi:10.1109/ICHR.2006.321367
Oztop E, Kawato M, Arbib M (2006) Mirror neurons and imitation: a computationally guided review. Neural Netw 19(3):254–271. doi:10.1016/j.neunet.2006.02.002
Demiris Y, Hayes G (2002) Imitation as a dual-route process featuring predictive and learning components: a biologically-plausible computational model. In: Dautenhahn K, Nehaniv C (eds) Imitation in animals and artifacts. MIT, Cambrige, pp 327–361
Demiris Y, Khadhouri B (2006) Hierarchical attentive multiple models for execution and recognition of actions. Robot Auton Syst 54(5):361–369. doi:10.1016/j.robot.2006.02.003
Sauser E, Billard A (2006) Biologically inspired multimodal integration: interferences in a human–robot interaction game. IEEE, pp 5619–5624. doi:10.1109/IROS.2006.282283
Toussaint M (2004) Learning a world model and planning with a self-organizing dynamic neural system. In: Thrun S, Saul LK, Schölkopf B (eds) Advances in neural information processing systems 16. MIT, Cambridge, pp 929–936
Bullock D, Grossberg S, Guenther FH (1993) A self-organizing neural model of motor equivalent reaching and tool use by a multijoint arm. J Cogn Neurosci 5(4):408–435. doi:10.1162/jocn.1993.5.4.408
Guenther FH, Micci Barreca D (1997) Neural models for flexible control of redundant systems. In: Morasso PG, Sanguineti V (eds) Self-organization, computational maps, and motor control. Elsevier, North Holland, pp 383–421
Fiala JC (1995) Neural network models of motor timing and coordination. PhD dissertation, Cognitive & Neural Systems Department, Boston University, Boston
Gentili RJ, Papaxanthis C, Ebadzadeh M, Eskiizmirliler S, Ouanezar S, Darlot C (2009) Integration of gravitational torques in cerebellar pathways allows for the dynamic inverse computation of vertical pointing movements of a robot arm. PLoS One 4(4):e5176. doi:10.1371/journal.pone.0005176
Bonaiuto J, Arbib MA (2010) Extending the mirror neuron system model, II: what did I just do? A new role for mirror neurons. Biol Cybern 102:341–359
Bonaiuto J, Rosta E, Arbib MA (2007) Extending the mirror neuron system model, I. Audible actions and invisible grasps. Biol Cybern 96:9–38
Billard A, Mataric MJ (2001) Learning human arm movements by imitation: evaluation of a biologically inspired connectionist architecture. Robot Auton Syst 37:145–160
Demiris Y, Johnson M (2003) Distributed, predictive perception of actions: a biologically inspired robotics architecture for imitation and learning. Connect Sci 15(4):231–243
Lopes M, Santos-Victor J (2005) Visual learning by imitation with motor representations. IEEE Trans Syst Man Cybern B 35(3):438–449
Arie H, Arakaki T, Sugano S, Tani J (2012) Imitating others by composition of primitive actions: a neuro-dynamic model. Robot Auton Syst 60:729–741. doi:10.1016/j.robot.2011.11.005
Roy D, Hsiao KY, Mavridis N (2004) Mental imagery for a conversational robot. IEEE Trans Syst Man Cybern B 34(3):1374–1383. doi:10.1109/TSMCB.2004.823327
Nehaniv CL, Dautenhahn K (2002) The correspondence problem. Imitation in animals and artifacts. MIT, Cambridge, pp 41–61
Caggiano V, Fogassi L, Rizzolatti G, Pomper JK, Thier P, Giese MA, Casile A (2011) View-based encoding of actions in mirror neurons of area f5 in macaque premotor cortex. Curr Biol 21(2):144–148. doi:10.1016/j.cub.2010.12.022
Chrisley RL (1990) Cognitive map construction and use: a parallel distributed processing approach. In: Touretzky D, Hinton G, Sejnowski T (eds) The proceedings of the 1990 connectionist models summer school. Morgan Kaufmann, San Mateo
Tani J (1996) Model-based learning for mobile robot navigation from the dynamical systems perspective. IEEE Trans Syst Man Cybern B 26(3):421–436. doi:1083-4419(96)03240-2
Cassimatisa NL, Trafton JG, Bugajska MD, Schultz AC (2004) Integrating cognition, perception and action through mental simulation in robots. Robot Auton Syst 49:13–23. doi:10.1016/j.robot.2004.07.014
Ziemke T, Jirenhed DA, Hesslow G (2005) Internal simulation of perception: a minimal neuro-robotic model. Neurocomputing 68:85–104
Hauber W (1998) Involvement of basal ganglia transmitter systems in movement initiation. Prog Neurobiol 56(5):507–540
Burgess PW, Dumontheil I, Gilbert SJ (2007) The gateway hypothesis of rostral prefrontal cortex (area 10) function. Trends Cogn Sci 11(7):290–298. doi:10.1016/j.tics.2007.05.004
Wolpert DM, Goodbody SJ, Husain M (1998) Maintaining internal representations: the role of the human superior parietal lobe. Nat Neurosci 1(6):529–533. doi:10.1038/2245
Blakemore S-J, Sirigu A (2003) Action prediction in the cerebellum and in the parietal lobe. Exp Brain Res 153(2):239–245. doi:10.1007/s00221-003-1597-z
Gentili R, Papaxanthis C, Pozzo T (2006) Improvement and generalization of arm motor performance through motor imagery practice. Neuroscience 137(3):761–772. doi:10.1016/j.neuroscience.2005.10.013
Buneo CA, Andersen RA (2006) The posterior parietal cortex: sensorimotor interface for the planning and online control of visually guided movements. Neuropsychologia 44(13):2594–2606. doi:10.1016/j.neuropsychologia.2005.10.011
Grefkes C, Fink GR (2005) The functional organization of the intraparietal sulcus in humans and monkeys. J Anat 207(1):3–17. doi:10.1111/j.1469-7580.2005.00426.x
Oh H, Gentili RJ, Reggia JA, Contreras-Vidal JL (2011) Learning of spatial relationships between observed and imitated actions allows invariant inverse computation in the frontal mirror neuron system. In: Proceedings of annual international conference of the IEEE Engineering in Medicine and Biology Society, pp 4183–4186. doi:10.1109/IEMBS.2011.6091038
Oh H, Gentili RJ, Reggia JA, Contreras-Vidal JL (2012) Modeling of visuospatial perspectives processing and modulation of the fronto-parietal network activity during action imitation. In: Proceedings of annual international conference of the IEEE Engineering in Medicine and Biology Society, pp 2551–2554. doi:10.1109/EMBC.2012.6346484
Marconi B, Genovesio A, Battaglia-Mayer A, Ferraina S, Squatrito S, Molinari M, ... Caminiti R (2001) Eye-hand coordination during reaching. I. Anatomical relationships between parietal and frontal cortex. Cereb Cortex 11(6):513–527
Gharbawie OA, Stepniewska I, Kaas JH (2011) Cortical connections of functional zones in posterior parietal cortex and frontal cortex motor regions in new world monkeys. Cereb Cortex 21(9):1981–2002. doi:10.1093/cercor/bhq260
Georgopoulos AP, Schwartz AB, Kettner RE (1986) Neuronal population coding of movement direction. Science 233(4771):1416–1419
Ito M (2013) Error detection and representation in the olivo-cerebellar system. Front Neural Circuits 7:1. doi:10.3389/fncir.2013.00001 eCollection 2013
Liégeois A (1977) Automatic supervisory control of the configuration and behavior of multibody mechanisms. IEEE Trans Syst Man Cybern 7(12):868–871. doi:10.1109/TSMC.1977.4309644
Baillieul J, Hollerbach, Brockett RW (1984) Programming and control of kinematically redundant manipulators. In: IEEE conference on decision and control, December 1984, pp 768–774. doi:10.1109/CDC.1984.272110
Molina-Vilaplana J, Feliu-Batlle J, López-Coronado J (2007) A modular neural network architecture for step-wise learning of grasping tasks. Neural Netw 20(5):631–645. doi:10.1016/j.neunet.2007.02.003
Poggio T, Girosi F (1989) A theory of networks for approximation and learning. AI Memo No. 1140. MIT, Cambridge
Hartenberg RS, Denavit J (1964) Kinematic synthesis of linkages. McGraw-Hill, New York
Morrey BF, Chao EY (1976) Passive motion of the elbow joint. J Bone Jt Surg Am 58:501–508
Jeannerod M (1995) Mental imagery in the motor context. Neuropsychologia 33(I1):1419–1432. doi:10.1016/0028-3932(95)00073-C
Collet C, Guillot A (2010) Autonomic nervous system activities during imagined movements. In: Guillot A, Collet C (eds) The neurophysiological foundations of mental and motor imagery. Oxford University Press, New York, pp 95–108
Contreras-Vidal JL, Stelmach GE (1995) A neural model of basal ganglia-thalamocortieal relations in normal and parkinsonian movement. Biol Cybern 73:467–476
Frak V, Cohen H, Pourcher E (2004) A dissociation between real and simulated movements in Parkinson’s disease. Neuroreport 15:1489–1492
Hétu S, Grégoire M, Saimpont A, Coll MP, Eugène F, Michon PE, Jackson PL (2013) The neural network of motor imagery: an ALE meta-analysis. Neurosci Biobehav Rev 37:930–949
Lotze M, Halsband U (2006) Motor imagery. J Physiol Paris 99:386–395
Sauvage C, Jissendi P, Seignan S, Manto M, Habas C (2013) Brain areas involved in the control of speed during a motor sequence of the foot: real movement versus mental imagery. J Neuroradiol 40(4):267–80. doi:10.1016/j.neurad.2012.10.001
Lau HC, Rogers RD, Haggard P, Passingham RE (2004) Attention to Intention. Science 20:303(5661): 1208–1210
Herrero MT, Barcia C, Navarro JM (2002) Functional anatomy of thalamus and basal ganglia. Childs Nerv Syst 18:386–404. doi:10.1007/s00381-002-0604-1
Jeannerod M (2006) Motor cognition. Oxford University Press, New York
Lotze M, Montoya P, Erb M, Hulsmann E, Flor H, Klose U, Birbaumer N, Grodd W (1999) Activation of cortical and cerebellar motor areas during executed and imagined hand movements: an fMRI study. J Cogn Neurosci 11:491–501
Aron AR, Durston S, Eagle DM, Logan GD, Stinear CM, Stuphorn V (2007) Converging evidence for a fronto-basal-ganglia network for inhibitory control of action and cognition. J Neurosci 27:11860–11864
Bonnet M, Decety J, Jeannerod M, Requin J (1997) Mental simulation of an action modulates the excitability of spinal reflex pathways in man. Brain Res Cogn Brain Res 5:221–228
Bradberry TJ, Gentili RJ, Contreras-Vidal JL (2010) Reconstructing three-dimensional hand movements from noninvasive electroencephalographic signals. J Neurosci 30(9):3432–3437. doi:10.1523/JNEUROSCI.6107-09.2010
Visalberghi E, Limongelli L (1996) Action and understanding: tool use revisited through the mind of capuchin monkeys. In: Russon A, Bard K, Parker S (eds) Reaching into thought. The minds of the great apes. Cambridge University Press, Cambridge, pp 57–79
Gentili RJ, Oh H, Molina J, Reggia JA, Contreras-Vidal JL (2012) Cortex inspired model for inverse kinematics computation for a humanoid robotic finger. In: Proceedings of annual international conference of the IEEE Engineering in Medicine and Biology Society, pp 3052–3055. doi:10.1109/EMBC.2012.6346608
Pedreño-Molina JL, Molina-Vilaplana J, López-Coronado J, Gorce P (2005) A modular neural network linking Hyper RBF and AVITE models for reaching moving objects. Robotica 23(05):625. doi:10.1017/S0263574704001055
Nishimoto R, Tani J (2009) Development of hierarchical structures for actions and motor imagery: a constructivist view from synthetic neuro-robotics study. Psychol Res 73:545–558. doi:10.1007/s00426-009-0236-0
deJong R, Coles MG, Logan GD, Gratton G (1990) In search of the point of no return: the control of response processes. J Exp Psychol Hum Percept Perform 16:164–182
Sylvester JC, Reggia JA, Weems SA, Bunting MF (2013) Controlling working memory with learned instructions. Neural Netw 41:23–38. doi:10.1016/j.neunet.2013.01.010
Jeannerod M (1994) The representing brain: neural correlates of motor intention and imagery. Behav Brain Sci 17:187–202
Guillot A, Lebon F, Rouffet D, Champely S, Doyon J, Collet C (2007) Muscular responses during motor imagery as a function of muscle contraction types. Int J Psychophysiol 66:18–27
Slade JM, Landers DM, Martin PE (2002) Muscular activity during real and imagined movements: a test of inflow explanations. J Sport Exerc Psychol 24:151–167
Lebon F, Rouffet D, Collet C, Guillot A (2008) Modulation of EMG power spectrum frequency during motor imagery. Neurosci Lett 435:181–185
Oztop E, Bradley NS, Arbib MA (2004) Infant grasp learning: a computational model. Exp Brain Res 158:480–503. doi:10.1007/s00221-004-1914-1
Oztop E, Kawato M, Arbib MA (2013) Mirror neurons: functions, mechanisms and models. Neurosci Lett 540:43–55. doi:10.1016/j.neulet.2012.10.005
Schweighofer N, Arbib MA, Kawato M (1998) Role of the cerebellum in reaching movements in humans. I. Distributed inverse dynamics control. Eur J Neurosci 10(1):86–94
Acknowledgments
This research was supported by the Office of Naval Research (ONR; N000141310597), USA.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Gentili, R.J., Oh, H., Huang, DW. et al. A Neural Architecture for Performing Actual and Mentally Simulated Movements During Self-Intended and Observed Bimanual Arm Reaching Movements. Int J of Soc Robotics 7, 371–392 (2015). https://doi.org/10.1007/s12369-014-0276-5
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12369-014-0276-5