Skip to main content
Log in

Evaluation of a Fuzzy-Based Impedance Control Strategy on a Powered Lower Exoskeleton

  • Published:
International Journal of Social Robotics Aims and scope Submit manuscript

Abstract

This paper comprehensively presents the analysis, design, and control of a wearable lower limb exoskeleton intended to enhance human performance and support load-carrying. The exoskeleton is powered at hip and knee joints to provide maximum joint torques of 74 Nm for the joint flexion/extension augmentation and load support. Typical issues regarding the implementation of the exoskeleton, such as mechanical design, sensory system, distributed embedded system, and high-speed networked control architecture are briefly presented. In order to control the coupled human-robot system, a new fuzzy-based impedance control strategy, previously developed by the authors, is used to provide assistive torques by regulating the desired impedance between the exoskeleton and a wearer’s limb according to a specific motion speed. The effect of human behaviours on the change of impedance parameters across variable walking speeds is adopted to design the fuzzy rules for the control strategy. As a result, the fuzzy-based impedance regulation is separately designed for swing and stance walking phases to adapt to the change. The control performance of the designed exoskeleton evaluated on a bench-testing over different ranges of walking speeds (about 0.3–1.2 m/s) have demonstrated that, resulting interaction torque, human-exoskeleton tracking error, and electrical power consumption are significantly reduced as compared to a traditional impedance control. Besides that, an average of 72.3 % of the load is transferred to the ground by the exoskeleton during the stance phase of walking. The developed control strategy on the lower exoskeleton has the potential to increase comfort and adaptation to users during daily use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Kazerooni H, Guo J (1993) Human extenders. ASME J Dyn Syst Meas Control 115(2B):281–289

    Article  Google Scholar 

  2. Kazerooni H, Steger R, Huang L (2006) Hybrid control of the Berkeley lower extremity exoskeleton (BLEEX). Int J Rob Res 25:561–573

    Article  Google Scholar 

  3. Kawamoto H, Sankai Y (2002) Power assist system HAL-3 for gait disorder person. In: Proceedings of the 8th International conferenceon computers for handicapped persons—ICCHP, Linz, pp 196–203

  4. Riener R, Lnenburger L et al (2005) Patient-cooperative strategies for robot-aided treadmill training: first experimental results. IEEE Trans Neural Syst Rehabil Eng 13:380–394

    Article  Google Scholar 

  5. Veneman JF, Kruidhof R et al (2007) Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng 15:379–386

    Article  Google Scholar 

  6. Herr H (2009) Exoskeletons and orthoses: classification, design challenges and future directions. J Neuro Eng Rehabil 6:6–21

    Article  Google Scholar 

  7. Lee S, Sankai Y (2002) Power assist control for walking aid withHAL-3 based on EMG and impedance adjustment around knee joint. In: Proceedings of IEEE international conference on intelligent robots and systems, Lausanne, pp 1499–1504

  8. Banala SK, Kim SH, Agrawal SK, Scholz JP (2009) Robot assisted gait training with active leg exoskeleton (ALEX). IEEE Trans Neural Syst Rehabil Eng 17(1):2–8

    Article  Google Scholar 

  9. Nathanael J, Guillaume M (2011) Connecting a human limb to an exoskeleton. IEEE Trans Robot 28(3):697–709

    Google Scholar 

  10. Li Z, Wang B, Sun F, Yang C et al (2014) sEMG-based joint force controls for an upper-limb power-assist exoskeleton robot. IEEE J Biomed Health Inf 18(3):1043–1050

    Article  Google Scholar 

  11. Ettore C, Rosen J, Perry JC, Burns S (2006) Myoprocessor for neural controlled powered exoskeleton arm. IEEE Trans Biomed Eng 53(11):2387–2396

    Article  Google Scholar 

  12. Perry JC, Rosen J, Burns S (2007) Upper-limb powered exoskeleton design. IEEE/ASME Trans Mechatron 12(4):408417

    Article  Google Scholar 

  13. Hayashi T et al (2005) Control method of robot suit HAL working asoperator’s muscle using biological and dynamical information. In: Proceedings of IEEE international conference on IROS, Alberta, pp 3063–3068

  14. Banala SK, Agrawal SK, Kim SH, Scholz JP (2010) Novel gait adaptation and neuromotor training results using an active leg exoskeleton. IEEE/ASME Trans Mechatron 15(2):216–225

    Article  Google Scholar 

  15. Wang L et al (2011) Model predictive control-based gait patterngeneration for wearable exoskeletons. In: International conference on intelligent robots and systems, pp 1–6

  16. Au S, Herr H (2008) Powered ankle-foot prosthesis. IEEE Robot Autom Mag 15(3):52–59

    Article  Google Scholar 

  17. Butler PB, Major RE, Patrick JHc (1984) The technique of reciprocal walking using the hip guidance orthosis (HGO) with crutches. Prosthet Orthot Int 8:33–38

    Google Scholar 

  18. Farris RJ, Quintero HA, oldfarb MG (2011) Preliminary evaluation of a powered lower limb orthosis to aid walking in paraplegic individuals. IEEE Trans Neural Syst Rehabil Eng 19(6):652–659

    Article  Google Scholar 

  19. Dollar M, Herr H (2008) Lower extremity exoskeletons and active orthoses: challenges and state-of-the-art. IEEE Trans Robot 24(1):144–158

    Article  Google Scholar 

  20. Herr H (2009) Exoskeletons and orthoses: classification, design challenges and future directions. J Neurol Eng Rehab 6:21

    Article  Google Scholar 

  21. Walsh CJ, Endo K, Herr H (2007) A quasi-passive leg exoskeleton for load-carrying augmentation. Int J Hum Robot 4(3):487–506

    Article  Google Scholar 

  22. Yu SN, Lee HD et al (2012) Design of an under-actuated exoskeleton system for walking assist while load carrying. Adv Robot 26(5):561–580

    Article  MathSciNet  Google Scholar 

  23. Wang B, Yang C, Li Z, et al (2012) sEMG-based control of an exoskeleton robot arm. In: Proceedings of the 5th International conference on intelligent robotics and applications (ICIRA 2012), Montreal, pp 63–72

  24. Folgheraiter M, Jordan M, Straube S (2012) Measuring the improvement of the interaction comfort of a wearable exoskeleton. Int J Soc Robot 4:253–302

    Article  Google Scholar 

  25. Hogan N (1985) Impedance control: an approach to manipulation: part I, II, III. J Dyn Syst Meas Control 107(1):1–24

    Article  MATH  Google Scholar 

  26. Jung S, Hsia TC, Bonitz RG (2004) Force tracking impedance control of robot manipulators under unknown environment. IEEE Trans Control Syst Technol 12(3):474–483

    Article  Google Scholar 

  27. Seraji H, Colbaugh R (1997) Force tracking in impedance control. Int J Robot Res 16(1):97–117

    Article  Google Scholar 

  28. Park JH (2001) Impedance control for biped robot locomotion. IEEE Trans Robot Autom 17(6):870–882

    Article  Google Scholar 

  29. Ha QP, Nguyen QH, Rye DC et al (2000) Impedance control of a hydraulically actuated robotic excavator. Autom Constr 9(5–6):421–435

    Article  Google Scholar 

  30. Mehdi H, Boubaker O (2012) Stiffness and impedance control using Lyapunov theory for robot-aided rehabilitation. Int J Soc Robot 4:107–119

    Article  Google Scholar 

  31. Unluhisarcikli O, Pietrusinski M et al. (2011) Design and control of a robotic lower extremity exoskeleton for gait rehabilitation. In: Proceedings of IEEE/RSJ international conference on intelligent robots and systems, San Francico, pp 25–30

  32. Akdoğan E, Adli MA (2011) The design and control of a therapeutic exercise robot for lower limb rehabilitation: physiotherabot. Mechatronics 21(3):509–522

    Article  Google Scholar 

  33. Lee S, Sankai Y (2005) Virtual impedance adjustment in unconstrained motion for an exoskeletal robot assisting the lower limb. Adv Robot 19(7):773–795

    Article  Google Scholar 

  34. Aguirre-Ollinger G, Colgate JE et al (2007) Active-impedancecontrol of a lower-limb assistive exoskeleton. In: Proceedings ofIEEE 10th international conference on rehabilitation robotics, Noordwijk, pp 188–195

  35. van der Kooij H, Veneman JF et al (2006) Compliant actuation of exoskeletons. Int J Robot Res 25:261–281

    Article  Google Scholar 

  36. Van Damme M, Beyl P, Vanderborght B et al (2010) The safety of a robot actuated by pneumatic muscle-a case study. Int J Soc Robot 2:289–303

    Article  Google Scholar 

  37. Tran HT, Cheng H, Lin XC et al (2014) The relationship between physical human-exoskeleton interaction and dynamic factors: using a learning approach for control applications. Sci China Inf Sci 57(12):1–13

    Article  Google Scholar 

  38. Tran HT, Cheng H, Duong MK et al (2014) Fuzzy-based impedance regulation for control of the coupled human–exoskeleton system. In: Proceedings of IEEE conference on robotics and biomimetics, Bali, pp 986–992

  39. Rose J, Gamble JG (2006) Human walking, 3rd edn. Williams and Wilkins, Baltimore

    Google Scholar 

  40. Winter DA (2009) Biomechanics and motor control of human movement, 4th edn. Wiley, New Jersey

    Book  Google Scholar 

  41. Llyod R, Cooke CB (2000) Kinetic changes associated with load carriage using two rucksack designs. Ergonomics 43(9):1331–1341

    Article  Google Scholar 

  42. Bamberg SJM, Benbasat AY, Scarborough DM et al (2008) Gait analysis using a shoe-integrated wireless sensor system. IEEE Trans Inf Technol Biomed 12(4):413–423

    Article  Google Scholar 

  43. Shu L, Hua T, Wang Y et al (2010) In-shoe plantar pressure measurement and analysis system based on fabric pressure sensing array. IEEE Trans Inf Technol Biomed 14(3):767–775

    Article  Google Scholar 

  44. Giuliani M, Lenz C, Müller T, Rickert M, Knoll A (2000) Design principles for safety in human-robot interaction. Int J Soc Robot 2:253–274

    Article  Google Scholar 

  45. Hidler JM, Wall AE (2005) Alterations in muscle activation patterns during robotic-assisted walking. Clin Biomech 20:184–193

    Article  Google Scholar 

  46. Kazerooni H, Racine JL et al (2005) On the control of the berkeley lower extremity exoskeleton (BLEEX). In: Proceedings of IEEE international conference on robotics and automation, Barcelona, pp 4353–4360

  47. Walsh CJ, Pasch K, Herr H (2006) An autonomous, underactuatedexoskeleton for load-carrying augmentation. In: In: Proceedings of international conference on intelligent robots and systems, Beijing, pp 1410–1415

  48. Zeng G, Hemami A (1997) An overview of robot force control. Robotica 15(5):473–482

    Article  Google Scholar 

  49. Chiaverini S, Siciliano B, Villani L (1999) A survey of robot interaction control schemes with experimental comparison. IEEE/ASME Trans Mechatron 4(3):273285

    Article  Google Scholar 

  50. Lu Z, Goldenberg AA (1995) Robust impedance control and force regulation: theory and experiments. Int J Robot Res 16(1):97–117

    Google Scholar 

  51. Dégoulange E, Dauchez P (1994) External force control of an industrial PUMA 560 robot. J Robot Syst 11(6):523–540

    Article  Google Scholar 

  52. Spong MW, Viyasagar M (1989) Robot dynamics and control. Wiley, New York

    Google Scholar 

  53. Anderson RJ, Spong MW (1988) Hybrid impedance control of robotic manipulators. IEEE Trans Robot Autom 4:549–556

    Article  Google Scholar 

  54. Lawrence DA (1988) Impedance control stability properties in common implementations. In: Proceedings of IEEE international conference on robotics and automation, Philadelphia, pp 1185–1190

  55. Lu WS, Meng QH (1991) Impedance control with adaptation for robotic manipulations. IEEE Trans Robot Autom 7(3):408–415

    Article  Google Scholar 

  56. Astrom KJ, Wittenmark B (1995) Adaptive control, 2nd edn. Addison Wesley, Reading, MA

    Google Scholar 

  57. Serban R, Freeman JS (2001) Identification and identifiability of unknown parameters in multibody dynamic systems. Multibody Syst Dyn 5:335–350

    Article  MATH  Google Scholar 

  58. Bamieh B, Giarre L (2001) LPV models: identification for gain scheduling control. In: Proceedings of European control conference

  59. Passino KM, Yurkovich S (1998) Fuzzy control. Addison Wesley Longman, Reading, MA

    Google Scholar 

  60. Lee CC (1990) Fuzzy logic in control systems: fuzzy logic controller. II. IEEE Tran Syst Man Cybern 20(2):419–435

    Article  MATH  Google Scholar 

  61. Perry J (1992) Gait analysis: normal and pathological function. SLACK, Thorofare, NJ

    Google Scholar 

  62. Goldberg SR, Stanhope SJ (2013) Sensitivity of joint moments to changes in walking speed and body-weight-support are interdependent and vary across joints. J Biomech 46(6):1176–1183

    Article  Google Scholar 

  63. Shamaei K, Sawicki GS, Dollar AM (2013) Estimation of quasi-stiffness of the human knee in the stance phase of walking. PLoS One 8(3):e59993

    Article  Google Scholar 

  64. Shamaei K, Sawicki GS, Dollar AM (2013) Estimation of quasi-stiffness of the human hip in the stance phase of walking. PLoS One 8(12):e81841

    Article  Google Scholar 

  65. Neptune RR, Sasaki K, Kautz SA (2008) The effect of walking speed on muscle function and mechanical energetics. Gait Posture 28(1):135–143

    Article  Google Scholar 

  66. Shamaei K, Napolitano PC, Dollar AM (2014) Design and functional evaluation of a quasi-passive compliant stance control knee-ankle-foot orthosis. IEEE Trans Neural Syst Rehabil Eng 22(2):258–268

    Article  Google Scholar 

  67. Fey NP, Silverman AK, Neptune RR (2010) The influence of increasing steady-state walking speed on muscle activity in below-knee amputees. J Electromyogr Kinesiol 20(1):155–161

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grant of National Natural Science Foundation of China (NSFC) No. 61273256. The authors would like to express our sincere appreciation to Dr. Qiu Jing for her contribution on the human biomechanical data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huu Toan Tran.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (doc 23 KB)

Supplementary material 2 (docx 35 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, H.T., Cheng, H., Rui, H. et al. Evaluation of a Fuzzy-Based Impedance Control Strategy on a Powered Lower Exoskeleton. Int J of Soc Robotics 8, 103–123 (2016). https://doi.org/10.1007/s12369-015-0324-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12369-015-0324-9

Keywords

Navigation