Skip to main content
Log in

Dynamic Social Zone based Mobile Robot Navigation for Human Comfortable Safety in Social Environments

  • Published:
International Journal of Social Robotics Aims and scope Submit manuscript

Abstract

We propose an effective human comfortable safety framework enabling a mobile service robot to navigate safely and socially in social environments. The proposed framework takes human states (position, orientation, motion and hand poses) and social interaction information relative to the robot into account to model extended personal space and social interaction space, respectively, the combination of which results in a dynamic social zone (DSZ). The DSZ-based human comfortable safety framework is able to estimate an approaching goal pose of the robot for a human or a group of humans, thus allowing the robot to not only avoid but also to approach a human or a group of humans in a socially acceptable manner. The DSZ is incorporated into the robots motion planning system comprising the D* planner technique and dynamic window approach algorithm to generate motion control commands for the mobile robot. We verify the effectiveness of the proposed method through simulation and experimental results under the newly proposed human comfortable safety indices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. https://youtu.be/zz5TDblVT8A.

  2. https://www.youtube.com/watch?v=bsaiiA5D-vI.

  3. https://www.youtube.com/watch?v=gRKOc2UbVZY.

References

  1. Adrian B, David ST, David CR, Mari V (2014) Group comfortability when a robot approaches. In: ICSR 2014, Proceedings of the 6th international conference on social robotics, pp 44–53

  2. Amaoka T, Laga H, Saito S, Nakajima M (2009) Personal space modeling for human-computer interaction. In: ICEC ’09, Proceedings of the 8th international conference on entertainment computing, pp 60–72

  3. Bennewitz M, Burgard W, Cielniak G, Thrun S (2005) Learning motion patterns of people for compliant robot motion. Int J Robot Res 24:31–48

    Article  Google Scholar 

  4. Van den Berg J, Ming L, Manocha D (2008) Reciprocal velocity obstacles for real-time multi-agent navigation. In: Proceedings of the IEEE international conference on robotics and automation, pp 1928–1935

  5. Borenstein J, Koren Y (1991) The vector field histogram-fast obstacle avoidance for mobile robots. IEEE Trans Robot Autom 7(3):278–288

    Article  Google Scholar 

  6. Bradski G (2000) The OpenCV Library. Dr Dobb’s Journal of Software Tools

  7. Carton D, Turnwald A, Wollherr D, Buss M (2013) Proactively approaching pedestrians with an autonomous mobile robot in urban environments. Exp Robot Springer Tracts Adv Robot 88:199–214

    Article  Google Scholar 

  8. Chernov N, Lesort C (2005) Least squares fitting of circles. J Math Imaging Vis 23(3):239–252

    Article  MathSciNet  Google Scholar 

  9. Chi-Pang L, Chen-Tun C, Kuo-Hung C, Li-Chen F (2011) Human-centered robot navigation-towards a harmoniously human-robot coexisting environment. IEEE Trans Robot 27(1):99–112

    Article  Google Scholar 

  10. Cristani M, Loris B, Giulia P, Andrea F, Diego T, Alessio DB, Gloria M, Murino V (2011) Social interaction discovery by statistical analysis of f-formations. In: The 22nd British machine vision conference, pp 23.1–23.12

  11. Dautenhahn K, Walters M, Woods S, Koay KL, Nehaniv CL (2006) How may i serve you?: a robot companion approaching a seated person in a helping context. In: ACM Press, Proceeding of the 1st ACM SIGCHI/SIGART conference on human robot interaction, pp 172–179

  12. Elfes A (1989) Using occupancy grids for mobile robot perception and navigation. Computer 22(6):46–57

    Article  Google Scholar 

  13. Fiorini P, Shillert Z (1998) Motion planning in dynamic environments using velocity obstacles. Int J Robot Res 17:760–772

    Article  Google Scholar 

  14. Fox D, Burgard W, Thrun S (1997) The dynamic window approach to collision avoidance. IEEE Robot Autom Mag 4(1):23–33

    Article  Google Scholar 

  15. Fraichard T (2007) A short paper about motion safety. In: IEEE international conference on robotics and automation, pp 1140–1145

  16. Fraichard T, Asama H (2003) Inevitable collision states. A step towards safer robots? In: IEEE/RSJ international conference on intelligent robots and systems, vol 1, pp 388–393

  17. Gomez JV, Mavridis N, Garrido S (2014) Fast marching solution for the social path planning problem. In: Proceedings of the IEEE international conference on robotics and automation, pp 1871–1876

  18. Hall ET (1966) The hidden dimension: man’s use of space in public and private. The Bodley Head Ltd, London

    Google Scholar 

  19. Helbing D, Molnr P (1995) Social force model for pedestrian dynamics. Phys Rev E 51(5):4282–4286

    Article  Google Scholar 

  20. Herbert B, Andreas E, Tinne T, Gool LV (2008) Speeded-up robust features (SURF). Comput Vis Image Underst 110(3):346–359

    Article  Google Scholar 

  21. Hsu D, Kindel R, Latombe JC, Rock S (2002) Randomized kinodynamic motion planning with moving obstacles. Int J Robot Res 21(3):233–255

    Article  MATH  Google Scholar 

  22. Kelley R, Nicolescu M, Tavakkoli A, King C, Bebis G (2008) Understanding human intentions via hidden markov models in autonomous mobile robots. In: Proceedings of the ACM/IEEE international conference on human-robot interaction, pp 367–374

  23. Kendon A (1990) Conducting interaction: patterns of behavior in focused encounters. Cambridge University Press, Cambridge

    Google Scholar 

  24. Kendon A (2010) Spacing and orientation in co-present interaction. In: Esposito A (ed) Development of multimodal interfaces: active listening and synchrony. Lecture notes in computer science, vol 5967. Springer, Heidelberg

    Google Scholar 

  25. Khatib O (1985) Real-time obstacle avoidance for manipulators and mobile robots. In: Proceedings of the IEEE international conference on robotics and automation, vol 2, pp 500–505

  26. Kirby R, Simmons R, Forlizzi J (2009) Companion: a constraintoptimizing method for personacceptable navigation. In: Proceedings of the IEEE international symposium on robot and human interactive communication, pp 607–612

  27. Koay KL, Syrdal D, Ashgari-Oskoei M, Walters ML, Dautenhahn K (2014) Social roles and baseline proxemic preferences for a domestic service robot. Int J Soc Robot 6(4):469–488

    Article  Google Scholar 

  28. Kruse T, Pandey AK, Alami R, Kirsch A (2013) Human-aware robot navigation: a survey. Robot Autonom Syst 61(12):1726–1743

    Article  Google Scholar 

  29. Kuno Y, Sadazuka K, Kawashima M, Yamazaki K, Yamazaki A, Kuzuoka H (2007) Museum guide robot based on sociological interaction analysis. In: Proceedings of the SIGCHI conference on human factors in computing systems, pp 1191–1194

  30. Kyriacos S, Joao M, Maarten VS, Shimon W, Jaebok K, Jered V, Gwenn E, Khiet T, Vanessa E, Noe PH, Ignacio PH, Rafael RV, Fernando C, Luis M, Jie S, Stavros P, Maja P, Lasse H, Marten S, Raphael K, Herve M (2015) TERESA: a socially intelligent semi-autonomous telepresence system. In: Workshop on machine learning for social robotics, IEEE international conference on robotics and automation

  31. Ladick L, Russell C, Kohli P, Torr PS (2013) Inference methods for CRFs with co-occurrence statistics. Int J Comput Vis 103(2):213–225

    Article  MathSciNet  MATH  Google Scholar 

  32. Langton SRH, Watt RJ, Bruce V (2003) Do the eyes have it? Cues to the direction of social attention. Trends Cognit Sci 4(2):50–59

    Article  Google Scholar 

  33. LaValle SM, Kuffner JJ Jr (2001) Randomized kinodynamic planning. Int J Robot Res 20(5):378–400

    Article  Google Scholar 

  34. Luber M, Spinello L, Silva J, Arras KO (2012) Socially-aware robot navigation: a learning approach. In: IEEE/RSJ international conference on intelligent robots and systems, pp 902–907

  35. Maja P, Alessandro V (2014) Social signal processing. The Oxford Handbook of Affective Computing

  36. Moravec HP, Elfes A (1985) High resolution maps from wide angle sonar. In: Proceedings of the IEEE international conference on robotics and automation, vol 2, pp 116–121

  37. Moussaid M, Perozo N, Garnier S, Helbing D, Theraulaz G (2010) The walking behaviour of pedestrian social groups and its impact on crowd dynamics. PloS One 5(4):e10,047

    Article  Google Scholar 

  38. Nonaka S, Inoue K, Arai T, Mae Y (2004) Evaluation of human sense of security for coexisting robots using virtual reality. 1st report: evaluation of pick and place motion of humanoid robots. In: Proceedings of the IEEE international conference on robotics and automation, vol 3, pp 2770–2775

  39. Papadakis P, Spalanzani A, Laugier C (2013) Social mapping of human-populated environments by implicit function learning. In: IEEE/RSJ international conference on intelligent robots and systems, pp 1701–1706

  40. PrimeSense NITE (2011) http://www.openni.org. Accessed 6 Aug 2012

  41. Quigley M, Gerkey B, Conley K, Faust J, Foote T, Leibs J, Berger E, Wheeler R, Ng A (2009) ROS: an open-source robot operating system. In: ICRA workshop on open source software, vol 32, pp 151–170

  42. Rios-Martinez J, Spalanzani A, Laugier C (2011) Understanding human interaction for probabilistic autonomous navigation using risk-rrt approach. In: IEEE/RSJ international conference on intelligent robots and systems, pp 2014–2019

  43. Rios-Martinez J, Spalanzani A, Laugier C (2014) From proxemics theory to socially-aware navigation: a survey. Int J Soc Robot 7(2):137–153

    Article  Google Scholar 

  44. ROS support from MATLAB (2013) http://www.mathworks.com/ros. Accessed 8 June 2014

  45. Rusu RB, Cousins S (2011) 3D is here: point cloud library (PCL). In: IEEE international conference on robotics and automation, pp 1–4

  46. Satake S, Kanda T, Glas DF, Imai M, Ishiguro H, Hagita N (2009) How to approach humans?-strategies for social robots to initiate interaction. In: ACM/IEEE international conference on human-robot interaction, pp 109–116

  47. Setti F, Russell C, Bassetti C, Cristani M (2014) F-formation detection: individuating free-standing conversational groups in images. arXiv:1409.2702

  48. Shiomi M, Zanlungo F, Hayashi K, Kanda T (2014) Towards a socially acceptable collision avoidance for a mobile robot navigating among pedestrians using a pedestrian model. Int J Soc Robot 6(3):443–455

    Article  Google Scholar 

  49. Siegwart R, Nourbakhsh IR, Scaramuzza D (2011) Introduction to autonomous mobile robots. The MIT Press, Cambridge

    Google Scholar 

  50. Sisbot EA, Marin-Urias LF, Alami R, Simeon T (2007) A human aware mobile robot motion planner. IEEE Trans Robot 23(5):874–883

    Article  Google Scholar 

  51. Sisbot EA, Marin-Urias L, Broqure X, Sidobre D, Alami R (2010) Synthesizing robot motions adapted to human presence. Int J Soc Robot 2(3):329–343

    Article  Google Scholar 

  52. Stentz A (1994) The D* algorithm for real-time planning of optimal traverses. Technical Report CMU-RI-TR-94-37, The Robotics Institute, Carnegie-Mellon University

  53. Svenstrup M, Hansen ST, Andersen HJ, Bak T (2011) Adaptive human-aware robot navigation in close proximity to humans. Int J Adv Robot Syst 8(2):7–21

    Google Scholar 

  54. Thrun S, Bennewitz M, Burgard W, Cremers AB, Dellaert F, Fox D, Hahnel D, Rosenberg C, Roy N, Schulte J, Schulz D (1999) Minerva: a second-generation museum tour-guide robot. In: Proceedings of the IEEE international conference on robotics and automation, vol 3, pp 1999–2005

  55. Torta E, Cuijpers RH, Juola JF (2013) Design of a parametric model of personal space for robotic social navigation. Int J Soc Robot 5(3):357–365

    Article  Google Scholar 

  56. Triebel R, Arras KO, Alami R, Beyer L, Breuers S, Chatila R, Chetouani M, Cremers D, Evers V, Fiore M, Hung H, Islas Ramirez O, Joosse M, Khambhaita H, Kucner T, Leibe B, Lilienthal A, Linder T, Lohse M, Magnusson M, Okal B, Palmieri L, Rafi U, van Rooij M, Zhang L (2015) SPENCER: a socially aware service robot for passenger guidance and help in busy airports. In: Proceedings of the 10th conference on field and service robotics (FSR), Toronto

  57. Vinciarelli A, Pantic M, Bourlard H (2009) Social signal processing: survey of an emerging domain. Image Vis Comput 27(12):1743–1759

    Article  Google Scholar 

  58. Walters ML, Dautenhahn K, Woods SN, Koay KL (2007) Robotic etiquette: results from user studies involving a fetch and carry task. In: ACM/IEEE international conference on human-robot interaction, pp 317–324

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuan-Tung Truong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Truong, XT., Ngo, TD. Dynamic Social Zone based Mobile Robot Navigation for Human Comfortable Safety in Social Environments. Int J of Soc Robotics 8, 663–684 (2016). https://doi.org/10.1007/s12369-016-0352-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12369-016-0352-0

Keywords