Abstract
We propose an effective human comfortable safety framework enabling a mobile service robot to navigate safely and socially in social environments. The proposed framework takes human states (position, orientation, motion and hand poses) and social interaction information relative to the robot into account to model extended personal space and social interaction space, respectively, the combination of which results in a dynamic social zone (DSZ). The DSZ-based human comfortable safety framework is able to estimate an approaching goal pose of the robot for a human or a group of humans, thus allowing the robot to not only avoid but also to approach a human or a group of humans in a socially acceptable manner. The DSZ is incorporated into the robots motion planning system comprising the D* planner technique and dynamic window approach algorithm to generate motion control commands for the mobile robot. We verify the effectiveness of the proposed method through simulation and experimental results under the newly proposed human comfortable safety indices.















Similar content being viewed by others
References
Adrian B, David ST, David CR, Mari V (2014) Group comfortability when a robot approaches. In: ICSR 2014, Proceedings of the 6th international conference on social robotics, pp 44–53
Amaoka T, Laga H, Saito S, Nakajima M (2009) Personal space modeling for human-computer interaction. In: ICEC ’09, Proceedings of the 8th international conference on entertainment computing, pp 60–72
Bennewitz M, Burgard W, Cielniak G, Thrun S (2005) Learning motion patterns of people for compliant robot motion. Int J Robot Res 24:31–48
Van den Berg J, Ming L, Manocha D (2008) Reciprocal velocity obstacles for real-time multi-agent navigation. In: Proceedings of the IEEE international conference on robotics and automation, pp 1928–1935
Borenstein J, Koren Y (1991) The vector field histogram-fast obstacle avoidance for mobile robots. IEEE Trans Robot Autom 7(3):278–288
Bradski G (2000) The OpenCV Library. Dr Dobb’s Journal of Software Tools
Carton D, Turnwald A, Wollherr D, Buss M (2013) Proactively approaching pedestrians with an autonomous mobile robot in urban environments. Exp Robot Springer Tracts Adv Robot 88:199–214
Chernov N, Lesort C (2005) Least squares fitting of circles. J Math Imaging Vis 23(3):239–252
Chi-Pang L, Chen-Tun C, Kuo-Hung C, Li-Chen F (2011) Human-centered robot navigation-towards a harmoniously human-robot coexisting environment. IEEE Trans Robot 27(1):99–112
Cristani M, Loris B, Giulia P, Andrea F, Diego T, Alessio DB, Gloria M, Murino V (2011) Social interaction discovery by statistical analysis of f-formations. In: The 22nd British machine vision conference, pp 23.1–23.12
Dautenhahn K, Walters M, Woods S, Koay KL, Nehaniv CL (2006) How may i serve you?: a robot companion approaching a seated person in a helping context. In: ACM Press, Proceeding of the 1st ACM SIGCHI/SIGART conference on human robot interaction, pp 172–179
Elfes A (1989) Using occupancy grids for mobile robot perception and navigation. Computer 22(6):46–57
Fiorini P, Shillert Z (1998) Motion planning in dynamic environments using velocity obstacles. Int J Robot Res 17:760–772
Fox D, Burgard W, Thrun S (1997) The dynamic window approach to collision avoidance. IEEE Robot Autom Mag 4(1):23–33
Fraichard T (2007) A short paper about motion safety. In: IEEE international conference on robotics and automation, pp 1140–1145
Fraichard T, Asama H (2003) Inevitable collision states. A step towards safer robots? In: IEEE/RSJ international conference on intelligent robots and systems, vol 1, pp 388–393
Gomez JV, Mavridis N, Garrido S (2014) Fast marching solution for the social path planning problem. In: Proceedings of the IEEE international conference on robotics and automation, pp 1871–1876
Hall ET (1966) The hidden dimension: man’s use of space in public and private. The Bodley Head Ltd, London
Helbing D, Molnr P (1995) Social force model for pedestrian dynamics. Phys Rev E 51(5):4282–4286
Herbert B, Andreas E, Tinne T, Gool LV (2008) Speeded-up robust features (SURF). Comput Vis Image Underst 110(3):346–359
Hsu D, Kindel R, Latombe JC, Rock S (2002) Randomized kinodynamic motion planning with moving obstacles. Int J Robot Res 21(3):233–255
Kelley R, Nicolescu M, Tavakkoli A, King C, Bebis G (2008) Understanding human intentions via hidden markov models in autonomous mobile robots. In: Proceedings of the ACM/IEEE international conference on human-robot interaction, pp 367–374
Kendon A (1990) Conducting interaction: patterns of behavior in focused encounters. Cambridge University Press, Cambridge
Kendon A (2010) Spacing and orientation in co-present interaction. In: Esposito A (ed) Development of multimodal interfaces: active listening and synchrony. Lecture notes in computer science, vol 5967. Springer, Heidelberg
Khatib O (1985) Real-time obstacle avoidance for manipulators and mobile robots. In: Proceedings of the IEEE international conference on robotics and automation, vol 2, pp 500–505
Kirby R, Simmons R, Forlizzi J (2009) Companion: a constraintoptimizing method for personacceptable navigation. In: Proceedings of the IEEE international symposium on robot and human interactive communication, pp 607–612
Koay KL, Syrdal D, Ashgari-Oskoei M, Walters ML, Dautenhahn K (2014) Social roles and baseline proxemic preferences for a domestic service robot. Int J Soc Robot 6(4):469–488
Kruse T, Pandey AK, Alami R, Kirsch A (2013) Human-aware robot navigation: a survey. Robot Autonom Syst 61(12):1726–1743
Kuno Y, Sadazuka K, Kawashima M, Yamazaki K, Yamazaki A, Kuzuoka H (2007) Museum guide robot based on sociological interaction analysis. In: Proceedings of the SIGCHI conference on human factors in computing systems, pp 1191–1194
Kyriacos S, Joao M, Maarten VS, Shimon W, Jaebok K, Jered V, Gwenn E, Khiet T, Vanessa E, Noe PH, Ignacio PH, Rafael RV, Fernando C, Luis M, Jie S, Stavros P, Maja P, Lasse H, Marten S, Raphael K, Herve M (2015) TERESA: a socially intelligent semi-autonomous telepresence system. In: Workshop on machine learning for social robotics, IEEE international conference on robotics and automation
Ladick L, Russell C, Kohli P, Torr PS (2013) Inference methods for CRFs with co-occurrence statistics. Int J Comput Vis 103(2):213–225
Langton SRH, Watt RJ, Bruce V (2003) Do the eyes have it? Cues to the direction of social attention. Trends Cognit Sci 4(2):50–59
LaValle SM, Kuffner JJ Jr (2001) Randomized kinodynamic planning. Int J Robot Res 20(5):378–400
Luber M, Spinello L, Silva J, Arras KO (2012) Socially-aware robot navigation: a learning approach. In: IEEE/RSJ international conference on intelligent robots and systems, pp 902–907
Maja P, Alessandro V (2014) Social signal processing. The Oxford Handbook of Affective Computing
Moravec HP, Elfes A (1985) High resolution maps from wide angle sonar. In: Proceedings of the IEEE international conference on robotics and automation, vol 2, pp 116–121
Moussaid M, Perozo N, Garnier S, Helbing D, Theraulaz G (2010) The walking behaviour of pedestrian social groups and its impact on crowd dynamics. PloS One 5(4):e10,047
Nonaka S, Inoue K, Arai T, Mae Y (2004) Evaluation of human sense of security for coexisting robots using virtual reality. 1st report: evaluation of pick and place motion of humanoid robots. In: Proceedings of the IEEE international conference on robotics and automation, vol 3, pp 2770–2775
Papadakis P, Spalanzani A, Laugier C (2013) Social mapping of human-populated environments by implicit function learning. In: IEEE/RSJ international conference on intelligent robots and systems, pp 1701–1706
PrimeSense NITE (2011) http://www.openni.org. Accessed 6 Aug 2012
Quigley M, Gerkey B, Conley K, Faust J, Foote T, Leibs J, Berger E, Wheeler R, Ng A (2009) ROS: an open-source robot operating system. In: ICRA workshop on open source software, vol 32, pp 151–170
Rios-Martinez J, Spalanzani A, Laugier C (2011) Understanding human interaction for probabilistic autonomous navigation using risk-rrt approach. In: IEEE/RSJ international conference on intelligent robots and systems, pp 2014–2019
Rios-Martinez J, Spalanzani A, Laugier C (2014) From proxemics theory to socially-aware navigation: a survey. Int J Soc Robot 7(2):137–153
ROS support from MATLAB (2013) http://www.mathworks.com/ros. Accessed 8 June 2014
Rusu RB, Cousins S (2011) 3D is here: point cloud library (PCL). In: IEEE international conference on robotics and automation, pp 1–4
Satake S, Kanda T, Glas DF, Imai M, Ishiguro H, Hagita N (2009) How to approach humans?-strategies for social robots to initiate interaction. In: ACM/IEEE international conference on human-robot interaction, pp 109–116
Setti F, Russell C, Bassetti C, Cristani M (2014) F-formation detection: individuating free-standing conversational groups in images. arXiv:1409.2702
Shiomi M, Zanlungo F, Hayashi K, Kanda T (2014) Towards a socially acceptable collision avoidance for a mobile robot navigating among pedestrians using a pedestrian model. Int J Soc Robot 6(3):443–455
Siegwart R, Nourbakhsh IR, Scaramuzza D (2011) Introduction to autonomous mobile robots. The MIT Press, Cambridge
Sisbot EA, Marin-Urias LF, Alami R, Simeon T (2007) A human aware mobile robot motion planner. IEEE Trans Robot 23(5):874–883
Sisbot EA, Marin-Urias L, Broqure X, Sidobre D, Alami R (2010) Synthesizing robot motions adapted to human presence. Int J Soc Robot 2(3):329–343
Stentz A (1994) The D* algorithm for real-time planning of optimal traverses. Technical Report CMU-RI-TR-94-37, The Robotics Institute, Carnegie-Mellon University
Svenstrup M, Hansen ST, Andersen HJ, Bak T (2011) Adaptive human-aware robot navigation in close proximity to humans. Int J Adv Robot Syst 8(2):7–21
Thrun S, Bennewitz M, Burgard W, Cremers AB, Dellaert F, Fox D, Hahnel D, Rosenberg C, Roy N, Schulte J, Schulz D (1999) Minerva: a second-generation museum tour-guide robot. In: Proceedings of the IEEE international conference on robotics and automation, vol 3, pp 1999–2005
Torta E, Cuijpers RH, Juola JF (2013) Design of a parametric model of personal space for robotic social navigation. Int J Soc Robot 5(3):357–365
Triebel R, Arras KO, Alami R, Beyer L, Breuers S, Chatila R, Chetouani M, Cremers D, Evers V, Fiore M, Hung H, Islas Ramirez O, Joosse M, Khambhaita H, Kucner T, Leibe B, Lilienthal A, Linder T, Lohse M, Magnusson M, Okal B, Palmieri L, Rafi U, van Rooij M, Zhang L (2015) SPENCER: a socially aware service robot for passenger guidance and help in busy airports. In: Proceedings of the 10th conference on field and service robotics (FSR), Toronto
Vinciarelli A, Pantic M, Bourlard H (2009) Social signal processing: survey of an emerging domain. Image Vis Comput 27(12):1743–1759
Walters ML, Dautenhahn K, Woods SN, Koay KL (2007) Robotic etiquette: results from user studies involving a fetch and carry task. In: ACM/IEEE international conference on human-robot interaction, pp 317–324
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Truong, XT., Ngo, TD. Dynamic Social Zone based Mobile Robot Navigation for Human Comfortable Safety in Social Environments. Int J of Soc Robotics 8, 663–684 (2016). https://doi.org/10.1007/s12369-016-0352-0
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12369-016-0352-0