Skip to main content
Log in

A Novel Approach to Systematic Development of Social Robot Product Families

  • Published:
International Journal of Social Robotics Aims and scope Submit manuscript

Abstract

In this paper, behavioural modules for social robots are developed by using the 3D Design Structure Matrix (DSM) model. Behavioural modules are the building blocks for the systematic design of social robot families, which are composed of personalized social robots, to satisfy the diverse needs of individuals or small groups. The 3D DSM is independent of any physical solution principle and is based on 3 different behavioural elements among robots, namely ‘perception’, ‘cognition’ and ‘motoric action’. In this study, the data for these elements are extracted from 45 different social robots existing in the literature. Sixteen behavioural modules are developed by defining the mutual interactions among these three types of behavioural elements. Among them, 6 sample modules are designed and manufactured in the laboratory. A model social family of two robots which uses different combinations of these 6 modules is developed for technology demonstration. This study is a first attempt to establish a behaviour, modularity-oriented and physical solution-independent infrastructure in the systematic conceptual design of personalized social robots for alternative purposes; hence, a starting point for future research toward further integration of social robots into everyday life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article and its supplementary information files.

References

  1. Adalgeirsson SO, Breazeal C (2010) MeBot: a robotic platform for socially embodied telepresence. In: 2010 5th ACM/IEEE international conference on human–robot interaction (HRI), Osaka, Japan, pp 15–22. https://doi.org/10.1109/HRI.2010.5453272

  2. Akachi K, Kaneko K, Kanehira N, Ota S, Miyamori G, Hirata M, Kajita S, Kanehiro F (2005) Development of humanoid robot HRP-3P. In: 5th IEEE-RAS international conference on humanoid robots, pp 50–55. https://doi.org/10.1109/ICHR.2005.1573544

  3. Alhaddad AY, Javed H, Connor O, Banire B, Al Thani D, Cabibihan J (2019) Robotic trains as an educational and therapeutic tool for autism spectrum disorder intervention. In: Lepuschitz W, Merdan M, Koppensteiner G, Balogh R, Obdržálek D (eds) Robotics in education. Advances in intelligent systems and computing. Springer, Cham, p 829. https://doi.org/10.1007/978-3-319-97085-1_25

    Chapter  Google Scholar 

  4. Araz M, Erden Z (2014) Behavioural representation and simulation of design concepts for systematic conceptual design of mechatronic systems using Petri nets. Int J Prod Res 52(2):563–583. https://doi.org/10.1080/00207543.2013.838648

    Article  Google Scholar 

  5. Aryananda L (2002) Recognizing and remembering individuals: online and unsupervised face recognition for humanoid robot. In: IEEE/RSJ international conference on intelligent robots and systems, vol 2, Lausanne, Switzerland, pp 1202–1207. https://doi.org/10.1109/IRDS.2002.1043897

  6. Axelsson M, Oliveira R, Racca M, Kyrki V (2021) Social robot co-design canvases: a participatory design framework. ACM Trans Hum–Robot Interact (THRI) 11(1):1–39. https://doi.org/10.1145/3472225

    Article  Google Scholar 

  7. Aymerich-Franch L, Ferrer I (2021) Socially assistive robots' deployment in healthcare settings: a global perspective. arXiv preprint arXiv:2110.07404

  8. Bartneck C (2002) eMuu—an emotional embodied character for the ambient intelligent home. Dissertation, Technical University of Eindhoven

  9. Bartneck C, Forlizzi J (2004) A design-centred framework for social human–robot interaction. In: RO-MAN 2004 13th IEEE international workshop on robot and human interactive communication (IEEE catalogue no. 04TH8759). IEEE, pp 591–594. https://doi.org/10.1109/ROMAN.2004.1374827

  10. Beira R, Lopes M, Praca M, Santos-Victor J, Bernardino A, Metta G, Becchi F, Saltaren R (2006) Design of the Robot-Cub (iCub) head. In: Proceedings of the 2006 IEEE international conference on robotics and automation (ICRA 2006), Orlando, FL, USA, pp 94–100. https://doi.org/10.1109/ROBOT.2006.1641167

  11. Billard A, Dautenhahn K (1997) Grounding communication in situated, social robots. In: Proceedings towards intelligent mobile robots conference, report no. UMCS-97-9-1. Department of Computer Science, Manchester University

  12. Birnbaum GE, Mizrahi M, Hoffman G, Reis HT, Finkel EJ, Sass O (2016) What robots can teach us about intimacy: the reassuring effects of robot responsiveness to human disclosure. Comput Hum Behav 63:416–423. https://doi.org/10.1016/j.chb.2016.05.064

    Article  Google Scholar 

  13. Borjesson F, Hölttä-Otto K (2014) A module generation algorithm for product architecture based on component interactions and strategic drivers. Res Eng Des 25(1):31–51. https://doi.org/10.1007/s00163-013-0164-2

    Article  Google Scholar 

  14. Breazeal C (2003) Toward sociable robots. Robot Auton Syst 42(3–4):167–175. https://doi.org/10.1016/S0921-8890(02)00373-1

    Article  MATH  Google Scholar 

  15. Broekens J, Heerink M, Rosendal H (2009) Assistive social robots in elderly care: a review. Gerontechnology 8(2):94–103. https://doi.org/10.4017/gt.2009.08.02.002.00

    Article  Google Scholar 

  16. Browning TR (2001) Applying the design structure matrix to system decomposition and integration problems: a review and new directions. IEEE Trans Eng Manag 48(3):292–306. https://doi.org/10.1109/17.946528

    Article  Google Scholar 

  17. Čaić M, Mahr D, Oderkerken-Schröder G (2019) Value of social robots in services: social cognition perspective. J Serv Mark 33(4):463–478. https://doi.org/10.1108/JSM-02-2018-0080

    Article  Google Scholar 

  18. Campa R (2016) The rise of social robots: a review of the recent literature. J Evol Technol 26(1):106–113

    Google Scholar 

  19. Cao HL, Van de Perre G, Kennedy J, Senft E, Esteban PG, Beir AD, Simut R, Belpaeme T, Lefeber D, Vanderborght B (2018) A personalized and platform-independent behaviour control system for social robots in therapy: development and applications. IEEE Trans Cogn Dev Syst 11(3):334–346. https://doi.org/10.1109/TCDS.2018.2795343

    Article  Google Scholar 

  20. Cavallo F, Semeraro F, Fiorini L, Magyar G, Sinčák P, Dario P (2018) Emotion modelling for social robotics applications: a review. J Bionic Eng 15(2):185–203. https://doi.org/10.1007/s42235-018-0015-y

    Article  Google Scholar 

  21. Chen GD, Hsu TC, Liyanawatta M (2018) Designing and implementing a robot in a digital theater for audience involved drama-based learning. In: Wu TT, Huang YM, Shadiev R, Lin L, Starčič A (eds) Innovative technologies and learning (ICITL 2018). Lecture notes in computer science, vol 11003. Springer, Cham. https://doi.org/10.1007/978-3-319-99737-7_12

    Chapter  Google Scholar 

  22. Chi OH, Jia S, Li Y, Gursoy D (2021) Developing a formative scale to measure consumers’ trust toward interaction with artificially intelligent (AI) social robots in service delivery. Comput Hum Behav 118:106700. https://doi.org/10.1016/j.chb.2021.106700

    Article  Google Scholar 

  23. Chiang KH, Tseng SH, Wu YH, Li GH, Lam CP, Fu LC (2008) Multisensor-based outdoor tour guide robot NTU-I. In: 2008 SICE annual conference, pp 1425–1430. https://doi.org/10.1109/SICE.2008.4654882

  24. Christodoulou P, Reid AAM, Pnevmatikos D, del Rio CR, Fachantidis N (2020) Students participate and evaluate the design and development of a social robot. In: 2020 29th IEEE international conference on robot and human interactive communication (RO-MAN). IEEE, pp 739–744. https://doi.org/10.1109/RO-MAN47096.2020.9223490

  25. Coronado E, Mastrogiovanni F, Indurkhya B, Venture G (2020) Visual programming environments for end-user development of intelligent and social robots, a systematic review. J Comput Lang 58:100970. https://doi.org/10.1016/j.cola.2020.100970

    Article  Google Scholar 

  26. Daie P, Li S (2016) Matrix-based hierarchical clustering for developing product architecture. Concurr Eng 24(2):139–152. https://doi.org/10.1177/1063293X16635721

    Article  Google Scholar 

  27. Erden Z (2018) Development and implementation of behavioural modules for platform-based mechatronic design. In: Proceedings of the TMCE 2018/12th international symposium on tools and methods of competitive engineering, Las Palmas de Gran Canaria, Spain, pp 625–634

  28. Erden Z (2019) Development of behavioural modules for mechatronic product families using the 3D design structure matrix approach. Trans SDPS J Integr Des Process Sci 23(1):141–160. https://doi.org/10.3233/JID190011

    Article  Google Scholar 

  29. Erixon G (1998) Modular function deployment: a method for product modularization. Dissertation, Royal Institute of Technology, Sweden

  30. Eshuis R (2006) Symbolic model checking of UML activity diagrams. ACM Trans Softw Eng Methodol 15(1):1–38. https://doi.org/10.1145/1125808.1125809

    Article  Google Scholar 

  31. Fink J, Bauwens V, Kaplan F, Dillenbourg P (2013) Living with a vacuum cleaning robot: a 6-month ethnographic study. Int J Soc Robot 5(3):389–408. https://doi.org/10.1007/s12369-013-0190-2

    Article  Google Scholar 

  32. Fitter NT, Mohan M, Kuchenbecker KJM, Johnson J (2020) Exercising with baxter: preliminary support for assistive social-physical human–robot interaction. J Neuroeng Rehabil 17(19):1–22. https://doi.org/10.1186/s12984-020-0642-5

    Article  Google Scholar 

  33. Fong T, Nourbakhsh I, Dautenhahn K (2003) A survey of socially interactive robots. Robot Auton Syst 42(3–4):143–166. https://doi.org/10.1016/S0921-8890(02)00372-X

    Article  MATH  Google Scholar 

  34. Forgas-Coll S, Huertas-Garcia R, Andriella A, Alenyà G (2021) How do consumers’ gender and rational thinking affect the acceptance of entertainment social robots? Int J Soc Robot 14:973–994. https://doi.org/10.1007/s12369-021-00845-y

  35. Fortunati L, Esposito A, Lugano G (2015) Introduction to the special issue ‘Beyond industrial robotics: social robots entering public and domestic spheres.’ Inf Soc 31(3):229–236. https://doi.org/10.1080/01972243.2015.1020195

    Article  Google Scholar 

  36. Gasteiger N, Hellou M, Ahn HS (2021) Factors for personalization and localization to optimize human–robot interaction: a literature review. Int J Soc Robot. https://doi.org/10.1007/s12369-021-00811-8

    Article  Google Scholar 

  37. Glas D, Satake S, Kanda T, Hagita N (2012) An interaction design framework for social robots. In: Durrant-Whyte H, Roy N, Abbeel P (eds) Robotics: science and systems VII. MIT Press, Cambridge, pp 89–96

    Google Scholar 

  38. Gockley R, Bruce A, Forlizzi J, Michalowski M, Mundell A, Rosenthal S, Sellner B, Simmons R, Snipes K, Schultz AC, Wang J (2005) Designing robots for long-term social interaction. In: 2005 IEEE/RSJ international conference on intelligent robots and systems. IEEE, pp 1338–1343. https://doi.org/10.1109/IROS.2005.1545303

  39. Graf B, Hans M, Schraft RD (2004) Care-O-bot II—development of a next generation robotic home assistant. Auton Robot 16(2):193–205. https://doi.org/10.1023/B:AURO.0000016865.35796.e9

    Article  Google Scholar 

  40. Graf B, Reiser U, Hägele M, Mauz K, Klein P (2009) Robotic home assistant Care-O-Bot® 3—product vision and innovation platform. In: 2009 IEEE workshop on advanced robotics and its social impacts. IEEE, pp 139–144.https://doi.org/10.1109/ARSO.2009.5587059

  41. Graf F, Odabaşi C, Jacobs T, Graf B, Födisch T (2019) MobiKa—low-cost mobile robot for human–robot interaction. In: IEEE RO-MAN 2019: responsible robotics and AI for the real world. 28th IEEE international conference on robot and human interactive communication, pp 1–6. https://arxiv.org/pdf/1905.01065.pdf

  42. Guizzo E (2016) The little robot that could…maybe. IEEE Spectr 53(1):58–62. https://doi.org/10.1109/MSPEC.2016.7367471

    Article  Google Scholar 

  43. Guo S, Xu H, Thalmann NM, Yao J (2017) Customization and fabrication of the appearance for humanoid robot. Vis Comput 33(1):63–74. https://doi.org/10.1007/s00371-016-1329-6

    Article  Google Scholar 

  44. Hegel F, Lohse M, Swadzba A, Wachsmuth S, Rohlfing K, Wrede B (2007) Classes of applications for social robots: a user study. In: RO-MAN 2007—the 16th IEEE international symposium on robot and human interactive communication, Jeju, Korea (South), pp 938–943.https://doi.org/10.1109/ROMAN.2007.4415218

  45. Helmer R, Yassine A, Meier C (2010) Systematic module and interface definition using component design structure matrix. J Eng Des 21(6):647–675. https://doi.org/10.1080/09544820802563226

    Article  Google Scholar 

  46. Henschel A, Laban G, Cross ES (2021) What makes a robot social? A review of social robots from science fiction to a home or hospital near you. Curr Robot Rep 2(1):9–19. https://doi.org/10.1007/s43154-020-00035-0

    Article  Google Scholar 

  47. Jiao JR, Simpson TW, Siddique Z (2007) Product family design and platform-based product development: a state-of-the-art review. J Intell Manuf 18(1):5–29. https://doi.org/10.1007/s10845-007-0003-2

    Article  Google Scholar 

  48. Kahn PH, Freier NG, Kanda T, Ishiguro H, Ruckert JH, Severson RL, Kane SK (2008) Design patterns for sociality in human–robot interaction. In: Proceedings of the 3rd ACM/IEEE international conference on human robot interaction (HRI ’08), pp 97–104. https://doi.org/10.1145/1349822.1349836

  49. Kittmann R, Fröhlich T, Schäfer J, Reiser U, Weißhardt F, Haug A (2015) Let me introduce myself: I am Care-O-bot 4, a gentleman robot. In: Mensch und computer 2015–Proceedings, pp 223–232. https://dl.gi.de/handle/20.500.12116/7892

  50. Lafaye J, Gouaillier D, Wieber PB (2014) Linear model predictive control of the locomotion of pepper, a humanoid robot with omnidirectional wheels. In: 2014 IEEE-RAS international conference on humanoid robots, pp 336–341. https://doi.org/10.1109/HUMANOIDS.2014.7041381

  51. Lambert A, Norouzi N, Bruder G, Welch G (2020) A systematic review of ten years of research on human interaction with social robots. Int J Hum–Comput Interact 36(19):1804–1817. https://doi.org/10.1080/10447318.2020.1801172

    Article  Google Scholar 

  52. Lee SB, Yoo HS (2017) Design of the companion robot interaction for supporting major tasks of the elderly. In: 2017 14th international conference on ubiquitous robots and ambient intelligence (URAI), Jeju, Korea (South), pp 655–659. https://doi.org/10.1109/URAI.2017.7992695

  53. Li BM, Xie SQ (2015) Module partition for 3D CAD assembly models: a hierarchical clustering method based on component dependencies. Int J Prod Res 53(17):5224–5240. https://doi.org/10.1080/00207543.2015.1015748

    Article  Google Scholar 

  54. Li Z, Cheng Z, Feng Y, Yang J (2013) An integrated method for flexible platform modular architecture design. J Eng Des 24(1):25–44. https://doi.org/10.1080/09544828.2012.668614

    Article  Google Scholar 

  55. Liberman-Pincu E, David A, Sarne-Fleischmann V, Edan Y, Oron-Gilad T (2021) Comply with me: using design manipulations to affect human–robot interaction in a COVID-19 officer robot use case. Multimodal Technol Interact 5(11):71. https://doi.org/10.3390/mti5110071

    Article  Google Scholar 

  56. Lin PC, Mettrick D, Hung PCK, Iqbal F (2019) Robot computing for music visualization. In: Gopal T, Watada J (eds) Theory and applications of models of computation (TAMC 2019). Lecture notes in computer science, vol 11436. Springer, Cham. https://doi.org/10.1007/978-3-030-14812-6_27

    Chapter  Google Scholar 

  57. Liu J, Jiang H, Li Z, Hu H (2009) A small window-cleaning robot for domestic use. In: 2009 international conference on artificial intelligence and computational intelligence, vol 2, Shanghai, China, pp 262–266. https://doi.org/10.1109/AICI.2009.112

  58. Lopez A, Paredes R, Quiroz D, Trovato G, Cuellar F (2017) Robotman: a security robot for human–robot interaction. In: 2017 18th international conference on advanced robotics (ICAR). IEEE, pp 7–12. https://doi.org/10.1109/ICAR.2017.8023489

  59. Michaud F, Duquette A, Nadeau I (2003) Characteristics of mobile robotic toys for children with pervasive developmental disorders. In: SMC'03 conference proceedings. 2003 IEEE international conference on systems, man and cybernetics. Conference theme—system security and assurance (Cat. no.03CH37483), vol 3, Washington, DC, USA, pp 2938–2943. https://doi.org/10.1109/ICSMC.2003.1244338

  60. Nocentini O, Fiorini L, Acerbi G, Sorrentino A, Mancioppi G, Cavallo F (2019) A survey of behavioural models for social robots. Robotics 8(3):54. https://doi.org/10.3390/robotics8030054

    Article  Google Scholar 

  61. Ozer I, Erden Z (2019) Systematic generation of a 3D DSM by extracting social robot behaviours from literature. In: Proceedings of the design society: international conference on engineering design, vol 1, issue no 1. Cambridge University Press, pp 3731–3740. https://doi.org/10.1017/dsi.2019.380

  62. Pandey AK, Gelin R (2018) A mass-produced sociable humanoid robot: pepper: the first machine of its kind. IEEE Robot Autom Mag 25(3):40–48. https://doi.org/10.1109/MRA.2018.2833157

    Article  Google Scholar 

  63. Papakostas GA, Sidiropoulos GK, Papadopoulou CI, Vrochidou E, Kaburlasos VG, Papadopoulou MT, Holeva V, Nikopoulou V, Dalivigkas N (2021) Social robots in special education: a systematic review. Electronics 10(12):1398. https://doi.org/10.3390/electronics10121398

    Article  Google Scholar 

  64. Pimmler TU, Eppinger SD (1994) Integration analysis of product decompositions. In: ASME design theory and methodology conference, Minneapolis, MN. https://dspace.mit.edu/bitstream/handle/1721.1/2514/1/SWP-3690-30681755.pdf

  65. Qiao L, Efatmaneshnik M, Ryan M, Shoval S (2017) Product modular analysis with design structure matrix using a hybrid approach based on MDS and clustering. J Eng Des 28(6):433–456. https://doi.org/10.1080/09544828.2017.1325858

    Article  Google Scholar 

  66. Ramanathan M, Mishra N, Thalmann NM (2019) Nadine humanoid social robotics platform. In: Gavrilova M, Chang J, Thalmann N, Hitzer E, Ishikawa H (eds) Advances in computer graphics (CGI 2019). Lecture notes in computer science, vol 11542. Springer, Cham. https://doi.org/10.1007/978-3-030-22514-8_49

    Chapter  Google Scholar 

  67. Rangan MK, Rakesh SM, Sandeep GSP, Suttur CS (2013) A computer vision-based approach for detection of fire and direction control for enhanced operation of fire fighting robot. In: 2013 international conference on control, automation, robotics and embedded systems (CARE), pp 1–6. https://doi.org/10.1109/CARE.2013.6733740

  68. Šabanović S (2010) Robots in society, society in robots. Int J Soc Robot 2(4):439–450. https://doi.org/10.1007/s12369-010-0066-7

    Article  Google Scholar 

  69. Salichs MA, Barber R, Khamis AM, Malfaz M, Gorostiza JF, Pacheco R, Rivas R, Corrales A, Delgado E, Garcia D (2006) Maggie: a robotic platform for human–robot social interaction. In: 2006 IEEE conference on robotics, automation and mechatronics, Bangkok, Thailand, pp 1–7. https://doi.org/10.1109/RAMECH.2006.252754

  70. Samarasinghe T, Gunawardena T, Mendis P, Sofi M, Aye L (2019) Dependency structure matrix and hierarchical clustering based algorithm for optimum module identification in MEP systems. Autom Constr 104:153–178. https://doi.org/10.1016/j.autcon.2019.03.021

    Article  Google Scholar 

  71. Stiehl WD, Breazeal C (2004) Applying a “Somatic Alphabet” approach to inferring orientation, motion, and direction in clusters of force sensing resistors. In: 2004 IEEE/RSJ international conference on intelligent robots and systems (IROS) (IEEE Cat. no.04CH37566), vol 3, Sendai, Japan, pp 3015–3020. https://doi.org/10.1109/IROS.2004.1389868

  72. Stiehl WD, Breazeal C, Han KH, Lieberman J, Lalla L, Maymin A, Salinas J, Fuentes D, Toscano R, Tong CH, Kishore A, Berlin M, Gray J (2006) The huggable, a therapeutic robotic companion for relational, affective touch. In: ACM SIGGRAPH 2006 emerging technologies, p 15. https://doi.org/10.1145/1179133.1179149

  73. Stone RB, Wood KL, Crawford RH (2000) A heuristic method for identifying modules for product architectures. Des Stud 21(1):5–31. https://doi.org/10.1016/S0142-694X(99)00003-4

    Article  Google Scholar 

  74. Thrun S, Beetz M, Bennewitz M, Burgard W, Cremers AB, Dellaert F, Fox D, Hähnel D, Rosenberg C, Roy N, Schulte J, Schulz D (2000) Probabilistic algorithms and the interactive museum tour-guide robot Minerva. Int J Robot Res 19(11):972–999. https://doi.org/10.1177/02783640022067922

    Article  Google Scholar 

  75. Vandemeulebroucke T, Dzi K, Gastmans C (2021) Older adults’ experiences with and perceptions of the use of socially assistive robots in aged care: a systematic review of quantitative evidence. Arch Gerontol Geriatr 95:104399. https://doi.org/10.1016/j.archger.2021.104399

    Article  Google Scholar 

  76. Walters ML (2008) The design space for robot appearance and behaviour for social robot companions. Doctoral dissertation, University of Hertfordshire

  77. Westlund JK, Lee JJ, Plummer L, Faridi F, Gray J, Berlin M, Quintus-Bosz H, Hartmann R, Hess M, Dyer S, Dos Santos K (2016) Tega: a social robot. In: The eleventh ACM/IEEE international conference on human robot interaction, Christchurch, New Zealand, p 561. https://doi.org/10.1109/HRI.2016.7451856

  78. Wood LJ, Zaraki A, Robins B, Dautenhahn K (2021) Developing Kaspar: a humanoid robot for children with autism. Int J Soc Robot 13(3):491–508. https://doi.org/10.1007/s12369-019-00563-6

    Article  Google Scholar 

  79. Xiong X, Song Z, Zhang J (2009) Domestic robots with multi-function and safe internet connectivity. In: 2009 international conference on information and automation, Zhuhai/Macau, China, pp 277–282. https://doi.org/10.1109/ICINFA.2009.5204935

  80. Yan H, Ang MH, Poo AN (2014) A survey on perception methods for human–robot interaction in social robots. Int J Soc Robot 6(1):85–119. https://doi.org/10.1007/s12369-013-0199-6

    Article  Google Scholar 

  81. Yousif J (2020) Humanoid robot as assistant tutor for autistic children. Int J Comput Appl Sci 8(2):8–13

  82. Yu TL, Yassine AA, Goldberg DE (2007) An information theoretic method for developing modular architectures using genetic algorithms. Res Eng Des 18(2):91–109. https://doi.org/10.1007/s00163-007-0030-1

    Article  Google Scholar 

  83. Zaraki A, Mazzei D, Giuliani M, De Rossi D (2014) Designing and evaluating a social gaze-control system for a humanoid robot. IEEE Trans Hum–Mach Syst 44(2):157–168. https://doi.org/10.1109/THMS.2014.2303083

    Article  Google Scholar 

  84. Zibafar A, Saffari E, Alemi M, Meghdari A, Faryan L, Pour AG, RezaSoltani A, Taheri A (2019) State-of-the-art visual merchandising using a fashionable social robot: RoMa. Int J Soc Robot 11(49):1–15. https://doi.org/10.1007/s12369-019-00566-3

    Article  Google Scholar 

  85. Złotowski J, Weiss A, Tscheligi M (2011) Interaction scenarios for HRI in public space. In: Mutlu B, Bartneck C, Ham J, Evers V, Kanda T (eds) Proceedings of the 3rd international conference on social robotics (ICSR 2011). Springer, Berlin, , pp 1–10

Download references

Acknowledgements

The authors acknowledge the contribution of Paul Danesh from the Academic Writing and Advisory Centre (AWAC) of Atilim University for proofreading the paper.

Funding

The study received internal financial support from Atilim University Research Grant.

Author information

Authors and Affiliations

Authors

Contributions

ZE conceived the original idea, developed theoretical formalism and 3D DSM model infrastructure; devised and directed the present research; performed questionnaire-based interviews for qualitative evaluation of the behavioural modules. IO collected and analysed social robot data; formulated the 3D DSM model of social robots and interactions; generated the behavioural modules; designed and manufactured the modules and robot models. Both authors wrote the manuscript, discussed and commented on the results.

Corresponding author

Correspondence to Zühal Erden.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 21 kb)

Supplementary file2 (XLSX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özer, İ., Erden, Z. A Novel Approach to Systematic Development of Social Robot Product Families. Int J of Soc Robotics 14, 1711–1729 (2022). https://doi.org/10.1007/s12369-022-00906-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12369-022-00906-w

Keywords

Navigation