Skip to main content
Log in

Optimizing headways for urban rail transit services using adaptive particle swarm algorithms

  • Original Paper
  • Published:
Public Transport Aims and scope Submit manuscript

Abstract

Minimizing the passenger waiting times is an important aim of the rail companies to improve the service efficiency. The present study contributes to this aim by: (1) presenting novel mixed-integer nonlinear programming formulations for the train timetabling problem, (2) designing efficient algorithms to solve large instances of the problem. The model addresses the strict vehicle capacity constraint and the period-dependent arrival rate and alighting ratio. The basic model is then improved by embedding heuristic rules in the mathematical formulation. Due to the complexity of the problem, the sizes of the instances solved optimally are small and not practical for the real implementation. In order to tackle large-sized problem instances, different adaptive particle swarm algorithms are proposed. The solution methods are experimentally evaluated with respect to the real instances suggested by Tehran Metropolitan rail. The results demonstrate that the proposed adaptive particle swarm optimization algorithms could reduce the total passenger waiting times significantly compared to the current practice of using an even-headway timetable as well as the baseline schedule. For the given case study, the performance of the proposed adaptive particle swarm algorithm is about 9.4% and 64% better than the quality of the baseline timetable and the regular headway schedule, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • Aksu DT, Akyol U (2014) Transit coordination using integer-ratio headways. IEEE Trans Intell Transp Syst 15(4):1633–1642

    Article  Google Scholar 

  • Albrecht T (2009) Automated timetable design for demand-oriented service on suburban railways. Public Transp 1:5–20

    Article  Google Scholar 

  • Arumugam MS, Rao M (2008) On the improved performances of the particle swarm optimization algorithms with adaptive parameters, cross-over operators and root mean square (RMS) variants for computing optimal control of a class of hybrid systems. Appl Soft Comput 8:324–336

    Article  Google Scholar 

  • Barrena E, Canca D, Coelho LC, Laporte G (2014a) Exact formulations and algorithm for the train timetabling problem with dynamic demand. Comput Oper Res 44:66–74

    Article  Google Scholar 

  • Barrena E, Canca D, Coelho LC, Laporte G (2014b) Single-line rail rapid transit timetabling under dynamic passenger demand. Transp Res Part B Methodol 70:134–150

    Article  Google Scholar 

  • Beirão G, Cabral JS (2007) Understanding attitudes towards public transport and private car: a qualitative study. Transp Policy 14:478–489

    Article  Google Scholar 

  • Bonyadi MR, Michalewicz Z, Li X (2014) An analysis of the velocity updating rule of the particle swarm optimization algorithm. J Heuristics 20:417–452

    Article  Google Scholar 

  • Bowman LA, Turnquist MA (1981) Service frequency, schedule reliability and passenger wait times at transit stops. Transp Res Part A Gen 15:465–471

    Article  Google Scholar 

  • Canca D, Barrena E, Algaba E, Zarzo A (2013) Design and analysis of demand-adapted railway timetables. arXiv:1307.0970 (arXiv preprint)

  • Carrel A, Mishalani RG, Wilson NH, Attanucci JP, Rahbee AB (2010) Decision factors in service control on high-frequency metro line. Transp Res Record J Transp Res Board 2146:52–59

    Article  Google Scholar 

  • Castillo E, Gallego I, Ureña JM, Coronado JM (2009) Timetabling optimization of a single railway track line with sensitivity analysis. Top 17:256–287

    Article  Google Scholar 

  • Cats O, Gkioulou Z (2015) Modeling the impacts of public transport reliability and travel information on passengers’ waiting-time uncertainty. EURO J Transp Logist 1–24. doi:10.1007/s13676-014-0070-4

  • Ceder A, Philibert L (2014) Transit timetables resulting in even maximum load on individual vehicles. IEEE Trans Intell Transp Syst 15(6):2605–2614

    Article  Google Scholar 

  • Chang S-C, Chung Y-C (2005) From timetabling to train regulation—a new train operation model. Inf Softw Technol 47:575–585

    Article  Google Scholar 

  • Cordone R, Redaelli F (2011) Optimizing the demand captured by a railway system with a regular timetable. Transp Res Part B Methodol 45:430–446

    Article  Google Scholar 

  • Das S, Abraham A, Konar A (2008) Particle swarm optimization and differential evolution algorithms: technical analysis, applications and hybridization perspectives. In: Liu Y, Sun A, Loh HT, Lu WF, Lim E-P (eds) Advances of computational intelligence in industrial systems. Studies in computational intelligence, vol 116. Springer, Berlin, Heidelberg, pp 1–38

    Chapter  Google Scholar 

  • Domínguez M, Fernández-Cardador A, Cucala AP, Gonsalves T, Fernández A (2014) Multi-objective particle swarm optimization algorithm for the design of efficient ATO speed profiles in metro lines. Eng Appl Artif Intell 29:43–53

    Article  Google Scholar 

  • Dong Y, Tang J, Xu B, Wang D (2005) An application of swarm optimization to nonlinear programming. Comput Math Appl 49:1655–1668

    Article  Google Scholar 

  • Eberhart RC, Shi Y (2001) Tracking and optimizing dynamic systems with particle swarms. Evolutionary Computation. In: Proceedings of the 2001 Congress on, 2001. IEEE, 94–100.

  • Eberlein XJ, Wilson NH, Barnhart C, Bernstein D (1998) The real-time deadheading problem in transit operations control. Transp Res Part B Methodol 32:77–100

    Article  Google Scholar 

  • Fernandes CM, Merelo JJ, Rosa AC (2015) A time-varying inertia weight strategy for particles swarms based on self-organized criticality. In: Madani K, Correia AD, Rosa A, Filipe J (eds) Computational intelligence. Studies in computational intelligence, vol 577. Springer, Berlin, Heidelberg, pp 49–62

    Google Scholar 

  • Flamini M, Pacciarelli D (2008) Real time management of a metro rail terminus. Eur J Oper Res 189:746–761

    Article  Google Scholar 

  • Galli L (2011) Combinatorial and robust optimisation models and algorithms for railway applications. 4OR-Q J Oper Res 9(2):215–218

    Article  Google Scholar 

  • Grossmann IE, Viswanathan J, Vecchietti A, Raman R, Kalvelagen E (2002) GAMS/DICOPT: a discrete continuous optimization package. GAMS Development Corporation, Washington, DC

    Google Scholar 

  • Guo X, Wu J, Sun H, Liu R, Gao Z (2016) Timetable coordination of first trains in urban railway network: a case study of Beijing. Appl Math Model 40(17–18):8048–8066. ISSN: 0307-904X

    Article  Google Scholar 

  • Hassannayebi E, Kiaynfar F (2012) A greedy randomized adaptive search procedure to solve the train sequencing and stop scheduling problem in double track railway lines. J Transp Res 9:235–257

    Google Scholar 

  • Hassannayebi E, Zegordi SH (2015) Variable and adaptive neighbourhood search algorithms for rail rapid transit timetabling problem. Comput Oper Res 78:439–453. doi:10.1016/j.cor.2015.12.011

  • Hassannayebi E, Sajedinejad A, Mardani S (2014) Urban rail transit planning using a two-stage simulation-based optimization approach. Simul Model Pract Theory 49:151–166

    Article  Google Scholar 

  • Hassannayebi E, Sajedinejad A, Mardani S (2016a) Disruption management in urban rail transit system: a simulation based optimization approach. In: Rai U (ed) Handbook of research on emerging innovations in rail transportation engineering. IGI Global, Hershey, PA, pp 420–450. doi:10.4018/978-1-5225-0084-1.ch018

    Chapter  Google Scholar 

  • Hassannayebi E, Zegordi SH, Amin-Naseri MR, Yaghini M (2016b) Train timetabling at rapid rail transit lines: a robust multi-objective stochastic programming approach. Oper Res Int J. doi:10.1007/s12351-016-0232-2

  • Hassannayebi E, Zegordi SH, Yaghini M (2016c) Train timetabling for an urban rail transit line using a Lagrangian relaxation approach. Appl Math Model 40(23):9892–9913

    Article  Google Scholar 

  • Ho T, Tsang CW, Ip KH, Kwan K (2012) Train service timetabling in railway open markets by particle swarm optimisation. Expert Syst Appl 39:861–868

    Article  Google Scholar 

  • Hu SR, Liu CT (2014) Optimizing headways for mass rapid transit services. J Transp Eng 140(11). doi:10.1061/(ASCE)TE.1943-5436.0000703

  • Huang Y, Yang L, Tang T, Cao F, Gao Z (2016) Saving energy and improving service quality: bicriteria train scheduling in urban rail transit systems. IEEE Trans Intell Transp Syst 17(12):3364–3379. doi:10.1109/TITS.2016.2549282

    Article  Google Scholar 

  • Jiang X, Guo X, Ran B (2014) Optimization model for headway of a suburban bus route. Math Probl Eng 2014:979062. doi:10.1155/2014/979062

    Google Scholar 

  • Jin JG, Tang LC, Sun L, Lee D-H (2014) Enhancing metro network resilience via localized integration with bus services. Transp Res Part E Logist Transp Rev 63:17–30

    Article  Google Scholar 

  • Kabasakal A, Kutlar A, Sarikaya M (2013) Efficiency determinations of the worldwide railway companies via DEA and contributions of the outputs to the efficiency and TFP by panel regression. Central Eur J Oper Res 23:69–88

    Article  Google Scholar 

  • Kang L, Zhu X (2016) A simulated annealing algorithm for first train transfer problem in urban railway networks. Appl Math Model 40:419–435

    Article  Google Scholar 

  • Karimi-Nasab M, Modarres M, Seyedhoseini S (2015) A self-adaptive PSO for joint lot sizing and job shop scheduling with compressible process times. Appl Soft Comput 27:137–147

    Article  Google Scholar 

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks. Perth, WA, 27, 1.

  • Kumar N, Vidyarthi DP (2016) A model for resource-constrained project scheduling using adaptive PSO. Soft Comput 20(4):1565–1580

    Article  Google Scholar 

  • Larson RC, Odoni AR (1981) Urban operations research. Prentice-Hall, New Jersey

    Google Scholar 

  • Li Z, Tan G (2008) A self-adaptive mutation-particle swarm optimization algorithm. In: Fourth international conference on natural computation, ICNC’08. IEEE, pp 30–34

  • Li J, Wei W, He Y (2011) Optimization of online timetable re-scheduling in high-speed train services based on PSO. In: IEEE International conference on transportation, mechanical, and electrical engineering (TMEE). IEEE, pp 1896–1899

  • Li H, Han BM, Lu F, Li XJ (2013) Application of particle swarm algorithm in train-set circulation problem of China. Appl Mech Mater 253:1235–1240

    Google Scholar 

  • Liu XJ, Mi CM, Wang YY, Shi WV (2013) Optimal train size and headway for urban rail transit system. Appl Mech Mater 253–255:2020–2023

    Article  Google Scholar 

  • Mannino C, Mascis A (2009) Optimal real-time traffic control in metro stations. Oper Res 57:1026–1039

    Article  Google Scholar 

  • Meng X, Jia L, Qin Y (2010) Train timetable optimizing and rescheduling based on improved particle swarm algorithm. Transp Res Rec J Transp Res Board 2197:71–79

    Article  Google Scholar 

  • Nickabadi A, Ebadzadeh MM, Safabakhsh R (2011) A novel particle swarm optimization algorithm with adaptive inertia weight. Appl Soft Comput 11:3658–3670

    Article  Google Scholar 

  • Ning B, Xun J, Gao S, Zhang L (2015) An integrated control model for headway regulation and energy saving in urban rail transit. IEEE Trans Intell Transp Syst 16(3):1469–1478

    Article  Google Scholar 

  • Niu Y, Shen L (2006) An adaptive multi-objective particle swarm optimization for color image fusion. In: McKay B, Yao X, Newton CS, Kim J-H, Furuhashi T (eds) Asia-Pacific conference on simulated evolution and learning. Springer, Berlin, Heidelberg, pp 473–480

    Chapter  Google Scholar 

  • Niu H, Tian X (2013) An approach to optimize the departure times of transit vehicles with strict capacity constraints. Math Probl Eng 2013:471928. doi:10.1155/2013/471928

    Google Scholar 

  • Niu H, Zhang M (2012) An optimization to schedule train operations with phase-regular framework for intercity rail lines. Discrete Dyn Nat Soc 2012:549374

    Google Scholar 

  • Niu H, Zhou X (2013) Optimizing urban rail timetable under time-dependent demand and oversaturated conditions. Transp Res Part C Emerg Technol 36:212–230

    Article  Google Scholar 

  • Niu H, Zhou X, Gao R (2015) Train scheduling for minimizing passenger waiting time with time-dependent demand and skip-stop patterns: Nonlinear integer programming models with linear constraints. Transp Res Part B Methodol 76:117–135

    Article  Google Scholar 

  • Panigrahi B, Pandi VR, Das S (2008) Adaptive particle swarm optimization approach for static and dynamic economic load dispatch. Energy Convers Manag 49:1407–1415

    Article  Google Scholar 

  • Ping R, Nan L, Liqun G, Zhiling L, Yang L (2005) Application of particle swarm optimization to the train scheduling for high-speed passenger railroad planning. In: IEEE international symposium on communications and information technology, ISCIT 2005, vol 1. IEEE, pp 581–584

  • Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization. Swarm Intell 1:33–57

    Article  Google Scholar 

  • Ren P, Li N, Gao L (2007) Bi-criteria passenger trains scheduling optimal planning based on integrated particle swarm optimization. J Syst Simul 19:1449–1452

    Google Scholar 

  • Sato K, Tamura K, Tomii N (2013) A MIP-based timetable rescheduling formulation and algorithm minimizing further inconvenience to passengers. J Rail Transp Plan Manag 3:38–53

    Article  Google Scholar 

  • Sels P, Dewilde T, Cattrysse D, Vansteenwegen P (2016) Reducing the passenger travel time in practice by the automated construction of a robust railway timetable. Transp Res Part B Methodol 84:124–156

    Article  Google Scholar 

  • Shelokar P, Siarry P, Jayaraman VK, Kulkarni BD (2007) Particle swarm and ant colony algorithms hybridized for improved continuous optimization. Appl Math Comput 188:129–142

    Google Scholar 

  • Shen S, Wilson NH (2001) An optimal integrated real-time disruption control model for rail transit systems. In: Voß S, Daduna JR (eds) Computer-aided scheduling of public transport. Springer, Berlin, Heidelberg, pp 335–363

    Chapter  Google Scholar 

  • Sheu JW, Lin WS (2012) Adaptive optimal control for designing automatic train regulation for metro line. IEEE Trans Control Syst Technol 20:1319–1327

    Article  Google Scholar 

  • Shi Y, Eberhart RC (1998) Parameter selection in particle swarm optimization. Evolutionary programming VII, 1998. Springer, 591-600.

  • Sun L, Jin JG, Lee D-H, Axhausen KW, Erath A (2014) Demand-driven timetable design for metro services. Transp Res Part C Emerg Technol 46:284–299

    Article  Google Scholar 

  • Sun X, Zhang S, Dong H, Chen Y, Zhu H (2015) Optimization of metro train schedules with a dwell time model using the Lagrangian duality theory. IEEE Trans Intell Transp Syst 16(3):1285–1293

    Article  Google Scholar 

  • Tong L, Zhou L, Tang, J (2014) Frequency setting of urban mass transit based on passenger flow along the entire line. In: The 2nd international symposium on rail transit comprehensive development (ISRTCD) proceedings. Springer, 59–65.

  • Van Zyl E, Engelbrecht A (2014) Comparison of self-adaptive particle swarm optimizers. In: IEEE symposium on swarm intelligence (SIS). IEEE, pp 1–9

  • Wales J, Marinov M (2015) Analysis of delays and delay mitigation on a metropolitan rail network using event based simulation. Simul Model Pract Theory 52:52–77

    Article  Google Scholar 

  • Wang Y, de Schutter B, van den Boom T, Ning B, Tang T (2013) Real-time scheduling for single lines in urban rail transit systems. In: IEEE international conference on intelligent rail transportation (ICIRT), 2013. IEEE, pp 1–6

  • Wang H, Shen G, Zhou J (2014a) Control strategy of maglev vehicles based on particle swarm algorithm. J Modern Transp 22:30–36

    Article  Google Scholar 

  • Wang Y, de Schutter B, Delft C, van den Boom T, Ning B, Tang T (2014b) Origin-destination dependent train scheduling problem with stop-skipping for urban rail transit systems. Transportation research board 93rd annual meeting

  • Wang Y, de Schutter B, van den Boom TJJ, Ning B, Tang T (2014c) Efficient bilevel approach for urban rail transit operation with stop-skipping. IEEE Trans Intell Transp Syst 15(6):2658–2670

    Article  Google Scholar 

  • Wang Y, Tang T, Ning B, van den Boom TJ, de Schutter B (2015) Passenger-demands-oriented train scheduling for an urban rail transit network. Transp Res Part C Emerg Technol 60:1–23

    Article  Google Scholar 

  • Wardman M, Shires J, Lythgoe W, Tyler J (2004) Consumer benefits and demand impacts of regular train timetables. Int J Transp Manag 2:39–49

    Google Scholar 

  • Wu Q, Cole C, McSweeney T (2016) Applications of particle swarm optimization in the railway domain. Int J Rail Transp 1–24. doi:10.1080/23248378.2016.1179599

  • Yang L, Gao Z, Li K (2010) Passenger train scheduling on a single-track or partially double-track railway with stochastic information. Eng Optim 42:1003–1022

    Article  Google Scholar 

  • Yang X, Li X, Ning B, Tang T (2015) An optimisation method for train scheduling with minimum energy consumption and travel time in metro rail systems. Transportmetrica B Transp Dyn 3(2):79–98

    Article  Google Scholar 

  • Yang X, Li X, Ning B, Tang T (2016) A survey on energy-efficient train operation for urban rail transit. IEEE Trans Intell Transp Syst 17:2–13

    Article  Google Scholar 

  • Yin J, Chen D, Zhao W, Chen L (2014) Online adjusting subway timetable by q-learning to save energy consumption in uncertain passenger demand. In: 17th IEEE international conference on intelligent transportation systems (ITSC), 2014. IEEE, pp 2743–2748

  • Yiqing L, Xigang Y, Yongjian L (2007) An improved PSO algorithm for solving non-convex NLP/MINLP problems with equality constraints. Comput Chem Eng 31:153–162

    Article  Google Scholar 

  • Yue Y, Wang S, Zhou L, Tong L, Saat MR (2016) Optimizing train stopping patterns and schedules for high-speed passenger rail corridors. Transp Res Part C Emerg Technol 63:126–146

    Article  Google Scholar 

  • Zhan Z-H, Zhang J, Li Y, Chung HS-H (2009) Adaptive particle swarm optimization. IEEE Trans Syst Man Cybern Part B Cybern 39:1362–1381

    Article  Google Scholar 

  • Zhang L, Tang Y, Hua C, Guan X (2015) A new particle swarm optimization algorithm with adaptive inertia weight based on Bayesian techniques. Appl Soft Comput 28:138–149

    Article  Google Scholar 

  • Zhu Y-T, Mao B-H, Liu L, Li M-G (2015) Timetable design for urban rail line with capacity constraints. Discrete Dyn Nat Soc 2015:429219. doi:10.1155/2015/429219

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Hessameddin Zegordi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassannayebi, E., Zegordi, S.H., Amin-Naseri, M.R. et al. Optimizing headways for urban rail transit services using adaptive particle swarm algorithms. Public Transp 10, 23–62 (2018). https://doi.org/10.1007/s12469-016-0147-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12469-016-0147-6

Keywords

Navigation