Abstract
We investigate the problem of designing energy-efficient timetables for railway traffic. More precisely, we slightly adapt a given timetable draft before it is published by moderately shifting the departure times of the trains at the stations. To this end, we propose a mixed-integer programming model for feasible adaptations of the timetable draft and investigate its behaviour under different objective functions which fall into two classes: reducing the energy cost and increasing the stability of the power supply system. These tests are performed on real-world problem instances from our industry partner Deutsche Bahn AG. They show a significant potential for improvements in the existing railway timetables.





Similar content being viewed by others
References
Albrecht T (2010) Reducing power peaks and energy consumption in rail transit systems by simultaneous train running time control. In: Pilo E (ed) Power supply. Energy management and catenary problems. WIT Press, London
Amt für Statistik Berlin–Brandenburg (2016) Statistischer Bericht E IV 4–j / 13: Energie- und CO\(_2\)-Bilanz in Berlin 2013. In: Technical report, Amt für Statistik Berlin–Brandenburg. https://www.statistik-berlin-brandenburg.de/publikationen/stat_berichte/2016/SB_E04-04-00_2013j01_BE.pdf
Boschetti G, Mariscotti A (2014) Optimizing the energy efficiency of electric transportation systems operation using a genetic algorithm. Int Rev Electr Eng 9(4):783–791
Cacchiani V, Toth P (2012) Nominal and robust train timetabling problems. Eur J Oper Res 219:727–737
DB Energie GmbH (2016) Preisblatt für die Nutzung des 16,7-Hz-Bahnstromnetzes (Bahnstromnetz) gültig ab 01.01.2016. http://www.dbenergie.de/file/dbenergie-de/2334804/Gc0omO5If7ealRmAuTWrUdUZJn4/10026274/data/Preisblatt_Netznutzung_2016.pdf
Deutsche Bahn AG (2011) Deutsche Bahn: Geschäftsbericht 2011. http://www1.deutschebahn.com/file/ecm2-db-de/12205938/abeOCRH6sx-i7EcUZHO6PKX3Rqo/2350464/data/2011_gb_dbkonzern.pdf
Doan VD, Watanabe S, Koseki T (2014) The design of an optimal running curve for train operation based on a novel parameterization method aiming to minimize the total energy consumption. In: Brebbia CA (ed) Computers in railways, vol XIV, pp 175–190
E-Motion (2016) Project E-Motion: energy-efficient mobility. https://edom.mi.uni-erlangen.de/e-motion
Feng X, Zhang H, Ding Y, Liu Z, Peng H, Xu B (2013) A review study on traction energy saving of rail transport. Discrete Dyn Nat Soc (article ID 156548). doi:10.1155/2013/156548
Fischer F, Helmberg C (2014) Dynamic graph generation for the shortest path problem in time expanded networks. Math Program A 143(1–2):257–297
Fournier D, Mulard D, Fages F (2012) Energy optimization of metro timetables: a hybrid approach. In: Proceedings of the 18th international conference on principles and practice of constraint programming, pp 8–12
Gerhardt N, Valov B, Trost T, Degner T, Lehnert W, Rostankowski A (2011) Bahnstrom regenativ—analyse und Konzepte zur Erhöhung des Anteils der regenerativen Energie des Bahnstroms: Endbericht. In: Technical report, Fraunhofer IWES. http://www.energiesystemtechnik.iwes.fraunhofer.de/content/dam/iwes-neu/energiesystemtechnik/de/Dokumente/Veroeffentlichungen/2011/2011_Bahnstrom_Regenrativ_Endbericht.pdf
Gong C, Zhang S, Zhang F, Jiang J, Wang X (2014) An integrated energy-efficient operation methodology for metro systems based on a real case of Shanghai metro line one. Energies 7(11):7305–7329
Gurobi Optimization, Inc (2016) Gurobi optimizer reference manual. http://www.gurobi.com
Hasegawa D, Nicholson GL, Roberts C, Schmid F (2014) The impact of different maximum speed on journey times, energy use, headway times and the number of trains required for phase one of Britain’s high speed two line. In: Brebbia CA (ed) Computers in railways, vol XIV, pp 485–496
Kim KM, Oh SM, Han MS (2010) A mathematical approach for reducing the maximum traction energy: the case of Korean MRT trains. In: International multiconference of engineers and computer scientists, pp 2169–2173
Kim KM, Kim KT, Han MS (2011) A model and approaches for synchronized energy saving in timetabling. In: 9th world congress on railway research
Kimura N, Miyatake M (2014) Strategy of speed restriction allowing extended running times to minimize energy consumption and passenger disutility. In: Brebbia CA (ed) Computers in railways, vol XIV, pp 733–743
Knörr W, Heidt C, Schacht A (2012) Aktualisierung “Daten- und Rechenmodell: Energieverbrauch und Schadstoffemissionen des motorisierten Verkehrs in Deutschland 1960–2030” (TREMOD, Version 5.3) für die Emissionsberichtserstattung 2013 (Berichtsperiode 1990–2011): Endbericht. In: Technical report, ifeu—Institut für Energie-und Umweltforschung Heidelberg GmbH. https://www.ifeu.de/verkehrundumwelt/pdf/IFEU(2012)_BerichtTREMODFKZ36016037_121113.pdf
Li X, Lo HK (2014) Energy minimization in dynamic train scheduling and control for metro rail operations. Transp Res Part B Methodol 70:269–284
Li X, Chien CF, Li L, Gao Z, Yang L (2012) Energy-constraint operation strategy for high-speed railway. Int J Innov Comput Inf Control 8(10(A)):6569–6583
Lorenz S, Hesse M, Fischer A (2012) Simulation and optimization of robot driven production systems for peak-load reduction. In: Laroque C, Himmelspach J, Pasupathy R, Rose O, Uhrmacher AM (eds) Proceedings of the 2012 winter simulation conference, pp 2875–2886
Miyatake M, Ko H (2010) Optimization of train speed profile for minimum energy consumption. IEEJ Trans Electr Electron Eng 5:263–269
Nelson KF, Uhan A, Zhao F, Sutherland JW (2013) Flow shop scheduling with peak power consumption constraints. Ann Oper Res 206:115–145
Peña-Alcaraz M, Fernández A, Cucala AP, Ramos A, Pecharromán RR (2011) Optimal underground timetable design based on power flow for maximizing the use of regenerative-braking energy. Proc Inst Mech Eng Part F J Rail Rapid Transit 226(4):397–408
Ragunathan AU, Wada T, Ueda K, Takahasi S (2014) Minimizing energy consumption in railways by voltage control on substations. In: Brebbia CA (ed) Computers in railways, vol XIV, pp 697–708
Sansó B, Girard P (1997) Instantaneous power peak reduction and train scheduling desynchronization in subway systems. Transp Sci 31(4):312–323
Scheepmaker GM, Goverde RMP, Kroon LG (2017) Review of energy-efficient train control and scheduling. Eur J Oper Res 257:355–376
Statistisches Bundesamt (2016) Homepage of the Statistische Bundesamt (German Federal Statistical Office). http://www.destatis.de
Su S, Li X, Tang T, Gao Z (2013) A subway train timetable optimization approach based on energy-efficient operation strategy. IEEE Trans Intell Transp Syst 14(2):883–893
Wang QY, Wu P, Liang ZC, Feng XY (2014) The hierarchical real-time control of high speed trains for automatic train operation. In: Brebbia CA (ed) Computers in railways, vol XIV, pp 17–36
Author information
Authors and Affiliations
Corresponding author
Additional information
The research reported in this paper is part of project “E-Motion: Energy-efficient mobility” and was funded under BMBF Grant 05M13WEE.
Rights and permissions
About this article
Cite this article
Bärmann, A., Martin, A. & Schneider, O. A comparison of performance metrics for balancing the power consumption of trains in a railway network by slight timetable adaptation. Public Transp 9, 95–113 (2017). https://doi.org/10.1007/s12469-017-0160-4
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12469-017-0160-4